Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung m.b.H.

ESSY

Status of the HOM Damped Cavity for the Willy Wien Ring

Ernst Weihreter / BESSY

- Short Review of HOM Damped Cavity Prototype
- Modifications for the Willy Wien Ring Cavity
- Results of Low Power Measurements
- Operation Experience and Limitations
- Outlook

HOM Damped Cavity Prototype

Project collaboration:BESSY / Germany(EC funded)Daresbury Lab / EnglandDELTA / Dortmund University, Germany
National Tsing Hua University / Taiwan

ESSY

Impedance Spectra and Critical Impedances

Longitudinal Impedance

$$Z_{\parallel}^{\text{thresh}} = \frac{1}{N_{C}} \cdot \frac{1}{f_{\parallel,HOM}} \cdot \frac{2 \cdot E_{0} \cdot Q_{s}}{I_{b} \alpha \tau_{s}}$$

Transverse Impedance

$$Z_{x,y}^{hresh} = \frac{1}{N_C} \cdot \frac{2 \cdot E_0}{f_{rev} I_b \beta_{x,y} \tau_{x,y}}$$

Ernst Weihreter

Homogenous Wave Guide Dampers

Ernst Weihreter

ESSY

Fabrication and Test of Ferrite Absorber Elements

Challenge: Bonding of ferrite on copper

ESSY

- NiZn ferrite tiles soldered on "soft" copper
- Bonding layer: sputtering of Ti and Cu
- ◆ SnAg(0.1%) solder material, T_{melt}= 295 ℃
- Quality test of solder process: Homogeniety of surface temperature

RF power test: $P_{ff} = 600 \text{ W} @ 1.3 \text{ GHz}$

Ernst Weihreter

IR Test: Thermal power density up to 14 W/cm2 ,

$= (I_b / n_b)^2 (1/T_b) k_{//}(\sigma)$ HOM Power Considerations

	BESSY II	ELETTRA	ALBA	ALS	SLS	ANKA	NSRRC
σ [mm]	4.8	5.4	4.6	9.	4.	9	7.5
k _{II} [V/pC]	0.7	0.64	0.72	0.5	0.8	0.5	0.52
E [GeV]	1.7	2.	3.	1.5	2.4	2.5	1.5
h	400	432	448	328	480	184	200
Multi-bunch							
I-beam [mA]	400	300	400	400	500	400	240
n-bunch	260	432	360	328	480	184	200
Q-bunch [nC]	1.23	0.6	1.0	0.8	1.	0.8	0.24
P-HOM [W]	530	207	360	160	400	160	60
Singel-bunch							
I-beam [mA]	30	-		2 x 20	-	-	25
Q-bunch [nC]	24	-		2 x 6.6	-	-	10
P-HOM [W]	504	-		66	-	-	66

$$P_{HOM} = Q_{bunch}^{2} (1/T_{bunch}) k_{//}(\sigma)$$
$$k_{//}(\sigma) = \sum_{n=1}^{\infty} \frac{\omega_{n}}{2} (\frac{R}{Q})_{n} \exp(-\omega_{n}^{2} \sigma^{2})$$

Max HOM power per cavity: $P_{long} = 600 W$ $P_{trans} = 600 W$ $P_{total} = 1.2 kW$

Test power density on ferrite: 14 W/cm²

 \rightarrow P_{HOM} = 6.6 kW per cavity

Cavity for the "Willy Wien" Ring

Bead pull measurements to verify reduction of long. HOM impedance (WG cutoff 625 MHz)

Gap between Ridge and Cavity Wall

High TM011 impedance of 10.8 kOhm not confirmed by simulations

Measurements at CELLS with pre-series ALBA cavity with 615 MHz WG cut off frequency:

- TM011 impedance still 12 kOhm
- Closing the gaps provisionally gives 5 kOhm for TM011 impedance
- \rightarrow high TM011 impedance is related with the gap

"Willy Wien" Cavity Commissioning

ESSY

Resonance Frequency @ RT	499.515	MHz
Tuning Range	2	MHz
Shunt Impedance @ RT	3.5	ΜΩ
Unloaded Q	29628	
Max.Longitudinal HOM Impedance	≤ 10.8	kΩ
Max. Transverse HOM Impedance	≤ 60	kΩ/m
Waveguide cut-off	625	MHz
Coupling Factor for TM010 (adjustable)	0-8	

Results of low power measurements

Commissioning at high power

- After baking at 130 °C for 5 days: $p = 3 \ 10^{-10} \text{ mb}$
- RF conditioning up to 45 kW in only 2 days: excellent quality of inner cavity surfaces with respect to roughness and contamination
 - No serious multipacting levels

However:

 Vacuum poblem at 45 kW at the WG flanges due to non-homogenous temperature incresase in the ridge area

Status of Willy Wien Ring:

15 mA accumulated beam @10 MeV 2 mA ramped up to 600 MeV

Ernst Weihreter

Problem: Heating of Flanges in the Gap Region

IR Image of Damping Waveguide

Magnetic field strength MWS calculation

Max. power per gap region: 244 W

Ernst Weihreter

Initial Thermal Design

ANSYS Calculations (Daresbury Lab)

Figure 5: Heat flux at HOM-Cavity body intersection

Max. power desity (@ 100 kW): 56 W/cm2 Max surface temperature rise: 42 ℃ Max. van Mieses stress: 15 MPa

Figure 4: 1/6 Model of cavity

Analysis of fields and power density in the area of the gap was impossible due to lack of resolution (and cpu time)

Ernst Weihreter

Cut through Flanges in the Gap Region

Old geometry, rotatable flange

New geometry, fixed flange

Ernst Weihreter

Thermal Simulation and Measurement

Ernst Weihreter

Simulation and Measurement Results

	Measure- ment Old geometry @ 25 kW	Simulation Old geometry	Simulation New geometry	Simulation New geometry scaled to 56 kW	Measure- ment Old geometry @ 40 kW	Simulation New geometry Scaled to 80 kW
P-ridge (W)		210	210	470		672
P-gasket (W)		80	80	180		256
Flange at body: T3 (°C)	50.5	50.6	41.2	54.9	59.5	66
Cu at body: T6 (°C)	37.	32.5	32.	34.9	39	37
Cu at WG: T9 (°C)	34.3	33.1	33.5	38.	33	41.4
Flange at WG: T7 (°C)	51.	44	37.2	46.5	60	53.6
T-max inside		111	50	75.4		94.9
T2 (°C)	34.	34	32	36.1	34	38.7
T4 (°C)	32.	33	32	34.5	32.5	36.4
T3/T4	1.58	1.53	1.29	1.59	1.83	1.81

First Ideas to Avoid the Gap

Gap seems to limit performance in two respects: i) TM011 impedance ii) Power capability

 \rightarrow is there a possible engineering solution to avoid the gap?

Ernst Weihreter

ESSY

Conclusions and Outlook

- With homogenous ferrite loaded damping waveguides the max. transverse HOM impedance could be lowerd by a factor of 4 down to 50 kOhm as expected. A similar reduction of the max. longitudinal HOM impedance, however, could not be realised. The impedance of the TM011 mode is 10.8 kOhm.
- The fundamental mode shuntimpedance improved from 3.1 to 3.5 MOhm thanks to increased waveguide length and higher cutoff frequency (615 → 625 MHz)
- Cavity operated in the Willy Wien ring routinely at 40 kW thermal power (V-rf = 530 kV). Power limit given by inhomogenous heating of waveguide flanges. Upper limit will be determined soon at CELLS with the ALBA pre-series cavity.
- Modifications of the cooling design in the ridge area of the cavity ports promise increase of thermal power capability to at least 80 kW (V-rf = 748 kV) based on thermal simulations
- Both limitations -- TM011 impedance of 10.8 kOhm and inhomogenous heating of waveguide flanges -- are related with the gap between the ridge and the cavity port inner wall. Ongoing R&D effort to avoid the gap and thus reduce TM011 impedance to about 4 kOhm and increase power capability up to 100 kW (V-rf = 836 kV)
- Thanks to the RF groups at CELLS and at ESRF for the cooperative and efficient collaboration in analysing the problems resulting from the gap.

Ernst Weihreter