

Storage ring DAMPY cavity

Michel LANGLOIS

Many thanks to Ernst Weihreter for his continuous help Thermal simulations from Marcos QUISPE Bake out in cooperation with vacuum section and workshop technicians

Storage ring DAMPY cavity

- Bead-pull impedance measurements
- RF overheating at MLS
- Bake-out
- Next steps

Bead-pull impedance measurements

The gap between ridges was modified : from 87.9 mm (MLS) to 85.1 mm (DAMPY 0)

The computed cut-off frequency drops from 629 to 619 MHz

The impedance of the fundamental mode E010 was supposed to retain its former value of $3.3 \text{ M}\Omega$

The impedance of E011 was supposed to drop significantly

Bead motion	bead	Wire on which beads are attached		 •The bead-pull system was lent by DARESBURY lab •The dielectric perturbations were calibrated with a pill-box cavity from BESSY. We used 2 alumina cylinders •The phase method was used. It calls for 2 ports: BP means beam port, RF means the input coupler, PU means pick-up 				
CS AL	ports	BPBP	BPBP	BPBP	BPBP	RFPU	MWS	
	antennas	148 mm	148 mm	148 mm	150 mm			
	bead	small cyl	big cyl	big cyl	small cyl	small cyl		
Alignment	R/Q T	127,9	120,8	115,7	125,7	116,9	111,3	
Tension	Q ₀	27735	27735	27751	26435	28330	32608	
	RT	3,55E+06	3,35E+06	3,21E+06	3,32E+06	3,31E+06	3,63E+06	

ESLS-RF. October 4-5 200

E011 impedance measured values

ports	BPBP	BPBP	BPBP	BPCF	BPCF	MWS
antennas	148 mm	148 mm	150 mm	148 mm	148 mm	
bead	small cyl	big cyl	small cyl	small cyl	big cyl	
$\Delta \phi$ max ^o	0,4	8,8	0,3	0,4	-9,1	
R/Q T	31,6	31,1	31,6	26,3	30,9	27,46
Q ₀	389,3	391,3	292	379,9	379,9	98,6
RT	1,23E+04	1,22E+04	9,23E+03	9,99E+03	1,17E+04	2,71E+03

E011 impedance : short circuits on ridges

ridges	1mm space	shorts		
MWS	gap 87,9mm	gap 87,9mm		
R/Q ttc (Ω)	34,8	25,5		
Q lossy	589	205		
R ttc (Ω)	20497	5228		
Bead-pull	gap 85,1mm	gap 85,1mm		
R/Q ttc (Ω)	30,9	26		
Q lossy	380	209		
R ttc (Ω)	11739	5424		

Damping E011 with an antenna

e modifications implemented serie cavity, a CF 16 port was he symmetry plane of the CPVityshort antennas, E011 was fitted with an antenna mpedance is decreased Ω load E010 impedance unchanged. For long antennas, E011 impedance decreases further but E010 impedance too. This means TX power would go to the load connected to the antenna.

Flange overheating at MLS

E010 magnetic field in the gap between ridges and cavity body

Thermal simulation with ANSYS

ESLS-RF. October 4-5 2007

Possible solutions:

 Change the quality of the bolts from A2 to A4. It was done at MLS and the cavity can now sustain 40 kW C.W

2. Use of fancy gaskets to decrease the length of the current path

ESLS-RF. October 4-5 2007

Possible solutions:

3. Provide copper instead of stainless steel wherever possible

original design

Computed temperature mapping at 56 kW dissipation

Short circuits possible implementation

Bake out set-up

4 independent controllers for the cavity heating strips: 1 for each damper and 1 for the body.

ESLS-RF. October 4-5 2007

Ion source configuration: Source 6 Detector: Multiplier 1 Accuracy: 5 Instrument serial number: LM92-00507018

Next steps

•September 07: Pressure test and subsequent leak-test

•October 07: RF conditioning

•November 07: decision on modifications of the damper flanges implementation of short circuits

•December 07: bake-out

•January 08: RF power test with shorts