

01

Progress of the Analog LLRF for ALBA

Hooman Hassanzadegan

Outline:

- 1. Quick review of the ALLRF design and specifications
- 2. Implementation
- 3. ALLRF performance in error compensation
- 4. ALLRF performance under "Virtual Beam" loading
- 5. "Envelope Simulation" of the ALBA RF system
- 6. Summary

Specifications

DAMPY cavity parameters

Nominal frequency	499.654	MHz
Tuning range	2	MHz
Shunt impedance	3.3	MΩ
Unloaded Q	28000	
Waveguide cut-off	615	MHz

ALBA storage-ring RF specifications

No. of cavities	6	
RF power (per cavity)	150	kW
RF voltage (per cavity)	600	kV
Overvoltage factor	2.8	
Synchroneous phase	159	deg

ALBA ALLRF specifications

Phase loop			
stability	±1	deg	
Bandwidth	1	MHz	
No. of bits	16	Bits	
DAC throughput	100	kS/s	
Loop delay	<1000	ns	
Phase control range	0 - 360	deg	
Amplitude loop			
stability	±1	%	
Bandwidth	1	MHz	
No. of bits	16	Bits	
DAC throughput	100	kS/s	
Loop delay	<1000	ns	
Dynamic range	>= 23	dB	
Tuning loop			
Bandwidth	~100	Hz	
Tuning range	2	MHz	
Tuning resolution	0.1 - 1	kHz	

3 of 1

4

Design of the ALLRF (Amp/Ph loops)

Progress of the Analog LLRF for ALBA

Design of the ALLRF (Tuning/FF loops)

- We measure the phase difference between the forward voltage and the cavity probe voltage by two IQ demodulators and a tag⁻¹ operation.
- Depending on the phase error polarity we move both tuners in/out simultaneously to keep the error as small as possible.
- For the booster we only tune the cavity at the peak of the power ramp.
- We have also foreseen the software and hardware for a field-flatness loop but we'll only use it if it proves to be necessary.

Implementation

11

Tuning/FF Unit

Adapter/Filter Board

ALLRF performance (error compensation)

Reg.

Amplitude / Phase

of 1

24 dB ripple reduction at f = 3 kHz

ALLRF performance

Dynamic range > 26 dB

4-quadrant operation

Previous noise on baseband signals $\approx 10 \text{mV}_{PP}$ With shielding and a good RF gen. $\rightarrow \approx 5 \text{mV}_{PP}$

FM disturbance (without proper shielding)

ALLRF performance under "Virtual Beam" loading

- **Beam loading was simulated** by adding a 500MHz signal to the amplifier drive and moving the 'FWD vol' measurement point to the ALLRF output.
- The phase of the 'Virtual Beam' was adjusted so that it was acting as a voltage sink thus simulating real beam for LLRF.
- The ALLRF successfully compensated the changes in Amp/Ph and reflected power due to 'Virtual Beam' loading.

9 ____t

"Envelope Simulations" for the Amp/Ph loops

- We use ADS software from Agilent to make Envelope Simulations.
- As the RF carrier (500 MHz) is not included in the simulations the simulation time is much shorter than conventional methods.
- No simplification is made in RF modeling.
- Envelope simulations are being done in the framework of a collaboration agreement with the UAB (J. Verdú)

Summary

- At ALBA we use IQ technique for the implementation of our RF diagnostics and the regulation loops.
- > The design and implementation of the LLRF is done in-house.
- In the ALLRF tests we achieved an amp/ph stability of at least 2-3 times better than what we had specified.
- The loop delay, bandwidth and dynamic range are well within the specifications.
- We have developed a new concept called "Virtual Beam" to test our LLRF system under beam-like conditions in the RF lab.
- We have made an envelope simulation tool for RF simulations with the ADS software with no modeling simplification but with much shorter simulation time compared to conventional methods.