11 ${ }^{\text {th }}$ European Synchrotron Light Source Radio-Frequency Meeting

04-05 October 2007
Synchrotron SOLEIL, Gif-sur-Yvette

COMMISSIONING AND FIRST
 OPERATIONAL EXPERIENCE WITH THE SOLEIL RF SYSTEMS

The BO RF plant was commissioned mid 2005.
Up to date, after ~ 7000 running hours, only a single trip in operation, due to a human mistake \rightarrow Don't play with the equipment during the operation!

The $35 \mathbf{k W}$ solid state amplifier has proved to be very reliable :

- 4 (out of 147) modules had a failing \rightarrow bad soldering (3) +1 filter (0 transistor foilure !)
- In any case, that did not affect at all the operating conditions and could be quickly repaired during scheduled machine shutdowns.

Commissioning of the SR RF

As scheduled for the first year of operation, with $\mathrm{I}_{\text {beam }}<300 \mathrm{~mA}$ and a reduced number of insertion devices, one half of the SR RF system (CM1, 2 amplifiers, the associated cryogenic plant, control and LLRF systems) was commissioned, during summer 2006.

The goal of storing up to 300 mA of stable beam, using a single CM, was quickly achieved.
At first, without the RF feedback, the cavity was slightly detuned in order to cope with the Robinson instability, at the expense of $\sim 10 \mathrm{~kW}$ extra reflected power.

Later on, we have commissioned the RF feedlback, which enabled to store up to 300 mA stable beam without any tuning offset, hence saving $\sim 10 \mathrm{~kW}$ of reflected power.

Commissioning of the SR RF

RF power required per cavity ($\mathrm{Pi}, \mathbb{P r}^{\prime}$) vs $\mathrm{I}_{\text {beam }}$ at cst voltage of 1 MV / cav

With RF feedback, $\boldsymbol{\Psi}=\Psi_{\text {opt }}\left(\mathbf{I}_{b}\right)$

Commissioning of the SR RF

Injection at constant tuning

Considering the difficulties encountered on Super-3HC at ELETTRA with a similar tuning system, which happened to get stuck after ~ 50 millions of motor steps, it was proposed to operate at constant tuning during the injection, in order to use the tuners more sparingly.

Injecting at constant tuming requires a ramping of $\mathrm{V}_{\text {cav }}$; otherwise too large P_{r} at low current (red plot).

$$
\begin{gathered}
\mathrm{V}_{\text {cav }}: 1.4 \mathrm{MV} \text { cst, } \psi=60^{\circ} \\
\mathrm{V}_{\text {cav }}: 1 \rightarrow \mathbf{1 . 4 \mathrm { MV } , \Psi = 6 0 ^ { \circ }} \\
\mathrm{~V}_{\text {cav }}: 0.65 \rightarrow 1.4 \mathrm{MV}, \Psi=60^{\circ}
\end{gathered}
$$

Ramping $\mathrm{V}_{\text {cav }}$ from 650 kV at 0 -current, up to 1.4 MV at 300 mA , with fixed tuning angle, $\psi=60^{\circ}$, allows to maintain $\mathbb{P}_{\mathrm{r}}<50 \mathrm{~kW}$ and $\mathrm{Pi} \sim 145 \mathrm{~kW}$ (green plot).

Energy and phase acceptance at low RF voltage?

Commissioning of the SR RF

Injection at constant tuning

At V_{RF} as low as $1.3 \mathrm{MV}(650 \mathrm{kV} / \mathrm{cav}), \mathrm{E} \& \Phi$ acceptance strongly reduced

The experience demonstrated that it remains tolerable : injection efficiency nearly unaffected while keeping V sin Φ cst : $\mathbf{V}\left(\mathbf{I}_{\mathbf{b}}\right)$ and $\Phi(\mathbf{V})$, numerically controlled via the PLC Precise control of $\Phi(\mathrm{V})$ required for operating with the multibunch transverse feedback Constant tuning mode routinely used in operation ; easy switching from constant to variable tuning mode (for run dedicated to machine $\mathbf{R} \& D \rightarrow$ free control of $\mathbf{V}_{\mathbf{R F}}$)

Commissioning of the SR RF

Injection at constant tuning - Robinson stability

Large stability margin even without RF feedback

CM1 had been RF conditioned with full reflection ($\mathrm{I}_{\text {beam }}=0$) up to 200 kW per coupler, at CERN and then up to 80 kW , once installed in the SOLEIL SR (always kept under HUV).

Re-conditioning with beam went quite smoothly : a few coupler vacuum trips, at first when reaching $\mathrm{P}>150 \mathrm{~kW}$; further conditioning likely would be required for operating at such power level ; however, with proper settings, $\mathrm{P}<145 \mathrm{~kW}$ @ 300 mA with a single CM, which is more demanding than 500 mA with 2 CMs .

No evidence of HOM excitation : up to 300 mA , power dissipation in the HOM loads always negligible \& residual beam phase oscillations $<0.1^{\circ}$

Taking care of using the cavity tuners sparingly \rightarrow cst tuning operation as much as possible + additional diagnostic \rightarrow rev counter for early detection of signs heralding a sticking

Indeed that allowed us to detect a malfunctioning (\rightarrow report by P. Bosland)

- Under fabrication (by ACCEL GmbH)
- Two cavities successfully tested in vertical cryostat at CERN (at first Nb sputtering for cav1 and at second try for cav2) \rightarrow CM2 is being assembled
- Complete CM2 (cryo + RF power) tests scheduled for beginning 2008 at CERN
- Installation and commissioning in SOLEIL SR \rightarrow May 2008 shut-down

SOLEIL CM2 cavities : \mathbf{Q}_{o} vs $\mathrm{E}_{\text {acc }}$

Operational experience with the cryogenic plant

At the beginning of the commissioning, difficulties were encountered with LHe feeding and pressure instabilities inside the cavity He tank, due to an unexpected thermal load on a pipe of the cryogenic valve box.

This was solved after bringing in slight modifications on the cryogenic valve box. The system has then become very reliable and the pressure variations could be kept below ± 2 mbar, namely $\pm 0.1^{\circ}$ in phase.

Forthcoming upgrades \rightarrow improve the autonomy

- Process modification \rightarrow take profit of the autonomy provided by the Dewar
- UPS extension to all the Cold-box components
- Cold-box dedicated water-cooling
- The two 180 kW solid state amplifiers for CM1 have demonstrated a good reliability in operation : after ~ 6000 running hours, only two trips, due to human mistakes (cable pull out by accident and a wrong manipulation)
- Although not perturbing for the operation, 41 (out of 1450) modules have suffered from a transistor failure; for 10 of them, it was the result of a circulator load failing \rightarrow Thermal grease has been added
- Faillure rate of $\sim 3 \% /$ year \rightarrow pessimistic
 since it includes part of the infant mortality (the failure rate is still decreasing with time) \rightarrow longer running periods are required to find out the actual MTBF
- 100 available spare modules \rightarrow turn over : 50 usable in house while 50 under repair

- Accidental event out of the operation time :

21 modules damaged at once due to strong transients, induced when testing the new digital I/Q feedback ($10 \mathrm{MHz} \mathrm{BW} \rightarrow$ too fast to be detected by the interlock system) \rightarrow need for a filter with $B W$ of $\sim \mathbf{1 0 0} \mathbf{k H z}$! !

- Concerning the amplifiers 3 and 4 for the CM2, 6 of the 8 required 45 kW towers are already completed \rightarrow Power tests of the 2 complete amplifiers by the end of 2007
- Investigations of other suitable transistors are going on : 2 samples of the BLF369, newly developed by Philips, have been tested and the results are quite promising; a 2.5 kW unit (8 modules) is being built for long duration power tests
- R\&D : - upgrades of the 350 MHz amplifiers
- @ other frequencies : $500 \mathrm{MHz}, 476 \mathrm{MHz}(2 \times 40 \mathrm{~kW}$ for LNLS)
- $90 \times 15 \mathrm{~kW}$ @ 1.3 GHz for "ARC-EN-CIEL"
- Collaboration agreement with the ESRF under preparation \rightarrow need for $54 \times 50 \mathrm{~kW}$

Amplifier control via the μ controller
 Transistor currents, P_{i} and P_{r} for a tower

[-f] micro-rf																					X
OFF) T 1 OFF) T 2 OFF) 13 (ON T4	$\begin{aligned} & \text { V1 } \\ & \text { Dreampli } \end{aligned}$		$\begin{gathered} \text { D2 } \\ \Gamma \quad \text { Preampli } \\ \hline \end{gathered}$		D3 Preampli		$\begin{gathered} \text { D4 } \\ \Gamma \text { Preampli } \end{gathered}$		D5 Preampli		$\begin{aligned} & \text { D6 } \\ & \Gamma \text { Preampli } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { D7 } \\ & \text { Preampli } \end{aligned}$		$\begin{aligned} & \text { D8 } \\ & \Gamma \text { Preampli } \end{aligned}$		D9 Preampli		D10 Preampli		$\begin{aligned} & \mathrm{H} \\ & \text { M0 } \end{aligned}$
	4.80	4.70			4.50	4.40			4.70	4.70			4.40	4.40			4.60	4.50			
	6.50	6.40	6.30	6.20	6.10	6.20	6.10	6.10	6.20	6.20	6.10	6.20	5.90	5.80	6.10	6.00	6.00	6.00	5.90	5.80	M1
	6.20	6.20	6.20	6.20	6.30	6.40	848	6.30	6.10	6.10	6.20	6.10	5.80	5.80	5.80	5.80	6.00	6.00	5.90	5.90	M2
	6.30	6.30	6.20	6.20	6.10	6.10	6.20	6.20	6.10	6.10	6.00	6.20	5.70	5.70	5.90	5.90	5.90	5.80	6.20	5.90	M3
	6.10	6.10	6.30	6.20	6.10	6.20	6.30	6.20	6.00	6.00	6.10	6.20	6.00	5.90	6.00	6.00	6.10	6.20	6.20	6.20	M4
Imax	6.20	6.20	6.30	6.20	6.20	6.20	6.10	6.10	6.10	5.90	6.10	6.00	5.80	5.90	5.90	5.90	6.00	6.00	5.90	6.00	M5
	6.20	6.20	6.20	6.20	6.00	6.10	6.00	6.00	5.80	5.90	6.30	6.30	5.60	5.60	6.10	6.00	6.10	6.10	5.90	6.20	M6
$1.00{ }^{\text {min }}$	6.30	6.20	6.20	6.30	6.00	6.00	6.30	6.30	6.30	6.20	6.20	6.30	6.00	5.70	5.70	6.00	6.10	6.00	580	5.90	M7
0.50 Pr	6.20	6.20	6.00	6.10	6.20	6.20	6.10	6.30	6.00	6.00	6.20	6.40	5.90	5.80	6.20	6.10	6.10	6.10	5.90	5.90	m8
	1.04	0.10	1.08	0.12	1.10	0.12	1.12	0.14	1.06	0.26	1.12	0.28	1.12	0.18	1.06	0.22	1.12	0.22	1.06	0.14	Pi/Pr
0.50 Delta	1.14	0.14	1.26	0.12	1.08	0.08	1.02	0.08	0.94	0.14	1.08	0.14	1.18	0.16	1.12	0.16	1.14	0.18	1.14	0.22	P/Pr
Γ Delta	6.1	5.90	5.8	5.9	6.10	6.	6.00	6.0	5.90	5.	5.	5.	6.10	6.	6.20	6.10	5.80	6.00	6.00	0	M8
D0	6.10	6.10	6.00	6.00	6.10	6.10	6.20	6.20	6.10	6.20	5.80	5.90	5.90	5.90	5.90	6.00	6.00	6.00	6.00	6.10	M7
0	6.20	6.3	6.30	6.3	6.10	6.1	6.10	6.2	5.70	5.7	6.10	5.90	6.30	6.2	6.10	6.10	6.20	6.10	5.90	5.80	M6
0.00	5.90	5.90	6.00	5.90	6.10	6.00	5.90	6.00	5.90	5.70	6.10	6.20	6.10	6.10	6.10	6.10	6.00	5.80	5.90	5.90	M5
80	6.10	6.00	6.00	6.20	5.90	5.90	6.00	6.0	5.80	5.9	5.70	5.90	6.00	6.0	6.40	6.30	6.20	6.10	5.70	5.70	M4
6.10 6.20 6.0	6.3	6.3	6.10	6.00	6.10	6.2	6.10	6.3	5.80	5.8	6.20	6.10	6.10	6.0	6.10	6.10	5.70	5.80	6.20	6.00	M3
6.00 6.20 2.30	6.00	6.10	6.20	6.30	6.00	6.00	5.90	5.90	6.40	6.50	5.80	5.70	6.40	6.40	6.20	6.10	5.80	5.80	6.00	5.90	M2
2.30	6.20	6.30	6.00	6.00	6.10	6.10	5.90	5.90	5.90	5.50	5.90	5.80	6.00	6.10	6.20	6.20	6.00	6.10	5.90	6.00	M1
			4.50	4.50			4.60	4.50			4.60	4.50			4.80	4.60			4.60	4.60	M0
\ulcorner Preampli			\checkmark Preampli		\ulcorner Preampli		\checkmark Preampli		\ulcorner Preampli		V Preampli		\ulcorner Preampli		\checkmark Preampli		Γ Preampli		$\checkmark \mathrm{F}$	ampli	B
AQUISITION	$\begin{aligned} & \text { PiT1 }=20.38 \mathrm{~kW} \quad \text { PiT2 }=20.08 \mathrm{~kW} \quad \mathrm{PiT} 3=21.18 \mathrm{~kW} \quad \mathrm{PiT} 4=21.98 \mathrm{~kW} \\ & \text { PrT1 }=5.76 \mathrm{~kW} \quad \mathrm{PrT} 2=5.12 \mathrm{~kW} \quad \operatorname{PrT} 3=3.04 \mathrm{~kW} \quad \mathrm{PrT} 4=3.20 \mathrm{~kW} \\ & \text { Pi Amp2 } 2=83.6 \mathrm{~kW} \quad \text { Pr Amp2 } 2=17.1 \mathrm{~kW} \quad \text { PAlim2 }=220.9 \mathrm{~kW} \end{aligned}$																				
																			\wedge		
																			18	-	
																			SIAT		
MESSAGES		CONFIG			GRAPHES		COPIER			SAUVE IMG			SAUVE DATA			IMPRIMER		QUITTER			

Amplifier control via the μ controller Transistor current distribution

(ax) Statistiques

Amplifier control via the μ controller Transistor current distribution

Single module currents vs time + tower $\operatorname{Pi} \& \operatorname{Pr}$

4.50
$11(A)$
3.90
$12(A)$

- 11

国 12

0.66

Pi (KW)
0.26
$\mathrm{Pr}(\mathrm{KW})$

- Pi
[Pr

TOUR DISSIPATEUR MODULE
Temps

Without RF feedback : $\pm 0.5 \%$ in amplitude and 0.15° in phase With RF feedback : $\pm 0.1 \%$ in amplitude and 0.05° in phase Measured residual beam phase oscillations $<0.1^{\circ}$

First measured performance : 0.1 \% in amplitude and 0.1° in phase
\rightarrow to be completed in forthcoming runs

Summary

- Up to date, the BO and half of the SR RF systems have been commissioned
- The first operational experience is quite satisfactory : after 7000 running hours in the BO and $\mathbf{5 0 0 0}$ in the SR, only $\mathbf{3}$ trips ($<\mathbf{1}$ hour), all due to human mistakes
- Special emphasis is put on the success of the solid state amplifiers, which were the most challenging part of the system; although not perturbing for the operation, in the SR 41 modules (out of 1450) suffered from a transistor failure, which corresponds to a failure rate of $\sim 3 \%$ per year (including infant mortality)
- Several laboratories (SLS, LNLS, CEA, ESRF) have expressed their intention of adopting the solid state technology "à la SOLEIL"; collaboration agreements are under elaboration and $R \& D$ is going on
- The 2nd half of the SR RF system, which is under fabrication, will be implemented in May 2008 for reaching the nominal performance ($\mathbf{4 . 4} \mathbf{~ M V}$ and 500 mA)

Acknowledgement

SOLEIL RF \& LINAC GROUP

Fernand RIBEIRO

Patrick MARCHAND

Jean-Pierre POLLINA

Jean-Pierre BAETE

Robert LOPES

Helder A. DIAS

Rajesh SREEDHARAN

Cyril MONNOT

Ti RUAN

Massamba DIOP

Jocelyn LABELLE

Marc LOUVET

Moussa EL AJJOURI

Nicolas GUILLOTIN

Julien SALVIA

