A new LLRF system for ASTRID and the proposed ASTRID2

Jørgen S. Nielsen Institute for Storage Ring Facilities (ISA) University of Århus Denmark

Why a new LLRF?

- The present ASTRID LLRF is
 - Old, Analog
 - Risk of failure, not easy to repair/maintain
 - Not much diagnostics build in
 - Not stable (experience drifts)
- We may need a new LLRF for ASTRID2, if we get the money for ASTRID2

ASTRID2

ASTRID2 is a proposed new synchrotron light source in Århus

- Electron energy: 580 MeV
- Emittance: 4-10 nm
- Beam Current: 200 mA
- Circumference: 45.7 m
- 6–fold symmetry
- 4 straight sections for insertion devices
- Will use ASTRID as booster (full energy injection)
 - Allows top-up operation

ASTRID2 application

- Århus University has applied for 41 Mkr (5.5 M€) under the national program
 Establishment of major national research infrastructure
 - The 41 Mkr will cover a new storage ring, necessary upgrades to ASTRID and relocation of beam lines.
 - Buildings are not included
- We have passed the prequalification (60 applications), and have been invited, together with 10 other projects, to make a second application
 - The 11 projects have applied for 3 times the available money (200 Mkr this year)
 - **Decision around Christmas**

ASTRID2 Layout

5

ASTRID2 details

General parameters		ASTRID2	ASTRID
Energy	E [GeV]	0.58	0.58
Dipole field	B [T]	1.066	1.6
Circumference	<i>L</i> [m]	45.713	40.00
Current	<i>I</i> [mA]	200	200
Revolution time	<i>T</i> [ns]	143.51	133.43
Length straight sections	[m]	2.82	
Number of insertion devices		4	1
Lattice parameters			
Horizontal tune	Q_x	5.23	2.29
Vertical tune	Q_{v}	2.23	2.69
Horizontal chromaticity	$dQ_x/d(\Delta p/p)$	-6.47	-4.25
Vertical chromaticity	$dQ_y/d(\Delta p/p)$	-11.26	-7.11
Momentum compaction	α_p	0.0120	0.068
Coupling factor		5 %	5 %
Synchrotron Radiation parameters			
Synchrotron radiation integrals	I_{i} [m]	0.546702	2.7164
	$I_2 [m^{-1}]$	3.463019	5.2016
	I ₃ [m ⁻²]	1.908666	4.3060
	I_{4} [m ⁻²]	-1.602292	1.8615
	$I_5 [m^{-1}]$	0.101072	0.9363
Energy loss per turn	U_0 [keV/turn]	5.5	8.3
Synchrotron radiation power	P_0 [kW]	1.1	1.6
Natural emittance	ε _H [nm]	(4-)10	140
Diffraction limit	λ [nm]	38-101	1759
Characteristic wavelength	$\lambda_{c}[nm]$	5.2	3.5
Characteristic energy	$\varepsilon_{c}[eV]$	238	358
Horizontal damping time	$\tau_h [ms]$	21.8	29.1
Vertical damping time	$\tau_v [ms]$	32.0	18.7
Longitudinal damping time	τ_{s} [ms]	20.8	7.9
RF parameters			
Damped energy spread	σ_{E}/E [0/00]	0.421	0.416
Damped bunch length	[cm]	2.2	6.5
RF frequency		105	105
Revolution frequency	[MHz]	6.18	7.5
Harmonic number	h	16	14
RF voltage	[kV]	50	30
Overvoltage factor	q	9.0	4
Quantum lifetime		00	∞
Synchrotron frequency	$v=\Omega/2\pi$ [kHz]	1.6	20.6

ESLS-RF 11 (4-5/10-2007), A new LLRF system for ASTRIDx

ASTRID2 lattice

Betatron amplitude functions [m] versus distance [m]

7

ASTRID2 RF

- 105 MHz (like ASTRID)
- The cavity could by like the new Max-II and -III cavities (which are similar in type to the ASTRID one)
- 10-20 kW tube-based FM transmitter (triode)
 - Tube-based FM transmitters are
 - Cheaper
 - More robust
- Main RF parameters
 - RF voltage (minimum): 50 kV
 - Harmonic: 16
 - Synchrotron frequency:
 - Synchrotron radiation power:

1.6 kHz

1.1 kW

The new LLRF for ASTRIDx

- Mixed analog/digital system
- Analog IQ modulators and demodulators for controlling and measuring the RF signals
- A computer (PC) running LabVIEW Real-Time with multifunction card to control and measure the baseband signals
- We believe this solution is
 - Simple, but adequate
 - Flexible
 - Allows easily integrated diagnostics

New ASTRID LLRF

A PC with LabVIEW Realtime

- With single points, multiple channels you can achieve loop rates of tens of kHz
 - Analog in calculation (PID) Analog out
- Need at maximum a bandwidth of some kHz
 - Cavity fill time has a 3 dB point at 6 kHz

Conclusions

- Have shown you
 - The new proposed ASTRID2 SR source
 - A new LLRF system for ASTRID and ASTRID2
- Would appreciate feedback on our ideas

