

P. Marchand, W. Gloor, <u>M. Pedrozzi</u>, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland A. Anghel, EPFL-CRPP Fusion Technology, 5232 Villigen PSI, Switzerland S. Chel, P. Bredy, CEA Saclay, France - M. Svandrlik, ELETTRA Italy

- In SLS, the beam lifetime is dominated by Touschek scattering
- The 3rd harmonic (1.5 GHz) RF system allows:
 - \rightarrow bunch lengthening \rightarrow decrease of charge density
 - \mapsto increase of beam lifetime (~ factor 3)
- Use of an idle (only beam-powered) superconducting (sc) cavity
- "Scaling" of the 350 MHz sc cavity developed at Saclay for SOLEIL
 - ➢ 2 Nb/Cu cells (4.5 K)
 - 6 coaxial HOM couplers (2 long. and 4 transv.)
- SUPER 3HC Project: CEA-Saclay, PSI, Sincrotrone Trieste and CERN

→ production of 2 cryomodules (1 for SLS, 1 for ELETTRA)

View of the 2 Cell cavity module

Complete cryo-module before installation at the SLS

- PAUL SCHERRER INSTITUT

Measured HOM Impedance vs. frequency

HOM coupler

CRYOGENIC SYSTEM DESCRIPTION

- LHe from Dewar enters the cryomodule through phase separator PS1
- The 2 cavity tanks are filled with LHe at 4.5 K from the bottom
- On top, common vessel (PS2) recuperates the cold GHe
 - \rightarrow part returned to cold-box
 - \rightarrow part used to cool the copper thermal shield (60K)
 - → part used to cool the 2 extremity tubes (4.5-300K)
- Inner tube and HOM couplers cooled by conduction
- Layers of super-insulation on the shield
- Line "T" (inlet) and "S" (outlet) for "warm" GHe circulation in case

of "warm operation" of the cryomodule (cryo-source failure, for instance)

• Line "T" also used to mix GHe with LHe (temperature control of the incoming fluid during cooldown)

- > Compressor and oil removal system located in a dedicated hutch outside.
- > 6 m³ GHe buffer outdoor
- \succ Gas recovery \rightarrow existing PSI system

Cryogenic requirements

Component	Load	Comments
2 RF cells	22 W	Directly in LHe bath
2 L – couplers	3 W	Cooled by conduction
4 T – couplers	8.5 W	Cooled by conduction
2 Extremity tubes	0.2 W	With 2 x 0.05 g/s cold GHe
Cryomodule static losses	5.1 W	With 0.071 g/s cold GHe in thermal shield (60 K)
Transfer-lines	6.5 W	Assuming 0.5 W/m load
Total refrigeration power at 4.5 K: 45.3 W		
Total GHe flow: 0.171 g/s \rightarrow 5.2 l/h of liquefaction duty		

o i v

Estimated cryogenic load @ 4 MV/m, 400 mA and Q=2 10^8

Cryogenic source

Helial 1000 refrigerator/liquefier from *Air Liquide*, designed for7.5 l/h liquefaction and 65 W of refrigeration at 4.5 K (mixed mode)that is about 50 % more than the anticipated requirement.

Measured max power 160W

Air Liquide supply:

- · Screw compressor with oil removal system
- Turbine-based-cold-box
- Control command system
- 500 Liter dewar
- Cryogenic transfer lines (including valve-box)

PROJECT MAILSTONES

➢ Fabrication and cold tests of the "bare" cavity completed in October 2001 at CERN (at 4MV/m, Q₀ was about 2.6 10⁸ for both cells)

> Tests of the complete cryomodule at Saclay (April 2002) confirmed the previous results

> Cryogenic source installation in the SLS starting May 2002.

> Cryomodule installed in the SLS ring, June 2002.

Warm operation" with beam at 200 mA starting June 17, 2002

Cryogenic source commissioning on dewar July, 2002

Cavity cooldown September 23-27, 2002.

Cold operation" with beam starting September 30, 2002

Monday September 2002, 400 mA stable operation with cold cavity (voltage harmonic system 750 KV)

SLS OPERATION WITH 3rd HARMONIC - FIRST RESULTS SUMMARY

WARM OPERATION (cavity cooling with air or Ghe).

With parked cavity, stable operation up to 200 mA.

At higher I overheating of the cavity and excitation of the long. Coupled Bunch Modes (CBM):

#430 - generated probably by an High Order Mode of the normal conducting cavity system.

#474 - generated by the fundamental mode of the warm 3rd harmonic cavity.

COLD OPERATION (4.5K)

- With parked cavity, stable operation up to 200 mA
- At higher current excitation of the longitudinal CBM:

#430 - generated probably by HOM's of the normal conducting cavity system.

- With tuned cavity, stable operation at to 400 mA.

3rd harmonic system global voltage ~750 KV - normal conducting system global voltage 2.1 MV

- -The additional Landau dumping from the harmonic system suppress the longitudinal CBM.
- Since October 1st, user operation at 300 mA with tuned cavity.

Amplitude loop disabled, tune adjusted for max lengthening at 400 mA. 3rd harmonic system global voltage at 300 mA ~550 KV - normal conducting system global voltage 2.1MV

First life time and bunch lengthening measurements

For I=180 mA:

Bunch lengthening of a factor of **3**.

life time improved by a factor 2.2.

Vacuum scattering could still partially decrease the life time, and additional measurements are needed.

For I=300 mA:

beam longitudinally unstable for 3rd harmonic system voltage below 480 kV (main system 2.1 MV)

For I=50 mA:

beam max voltage in 3rd harmonic system ~290 KV with a detuning of ~20kHz. For lower detuning beam lost due to over voltage in the 3rd harmonic system (resonance with harmonic of the synchrotron frequency)

300 mA - 20% GAP FILLING PATTERN AND BUNCH PHASE ALONG THE TRAIN

 3^{rd} harmonic $F_3 = 1498.957365$ MHz

Cavity Tune: $\Delta f = 72 \text{ kHz}$

3rd harmonic Voltage: $V_{sc} = R/Q * I * F_3/\Delta f = 552 \text{ KV}$

Main accelerating voltage: V_{nc} = 2.08 MV

At 300 mA, beam longitudinally unstable for 3rd harmonic system voltage below 480 kV (main system 2.08 MV)

sweep 1 [ps]

300 mA - Bunch shape along the bunch train

No significant deformation observed

300 mA operation - Global voltage seen by the beam

BUCKET PHASE DRIFT ⇒ At equilibrium no INCREASED ENERGY SPREAD measured.

320 mA operation

Train and bunch distortion at maximum lengthening

PAUL SCHERRER INSTITUT

320 mA operation

average phase drift [deg]

Suppression of CBM #430 by increased Landau damping 320 mA operation

CONCLUSIONS

First demonstration of SR operation with super conducting Landau cavity

Warm operation

- Current limited at 200 mA in warm operation, due to cavity overheating (with cryostat isolation vacuum).

Cold operation

- Stable operation at 400 mA and maximum elongation demonstrated.
- Bucket elongation up to a factor of 3 with life time amelioration of a factor 2. 2.
- Increased Landau damping and suppression of CBM #430 demonstrated.
- 20% gap induces a dispersion in synchrotron frequency, bucket phase drift and voltage fluctuations.

-Stable user operation at 300 mA at reduced S3HC voltage.

Next steps

- Additional studies with uniform filling pattern (no gap).
- Check energy spread at high elongation.
- Additional test at currents below 100 mA.
- Reproduce stable 400mA operation.
- Check transverse instability threshold versus S3HC voltage.
- Check operation with tuning loop enabled.