Diamond RF Status (RF Activities at Daresbury)

Mike Dykes

Content

- ASTeC
 - What is it?
 - What does it do?
- Diamond
 - Status
 - Linac
 - Booster RF
 - Storage Ring RF
- Summary

Accelerator Science and Technology Centre

ASTeC was formed in 2001 as a centre of excellence in the field of accelerator science and technology, carrying out programmes of research and design in support of CLRC's activities.

http://www.astec.ac.uk

ASTeC-What is it?

- Four Groups
 - Accelerator Physics
 - RF Systems (inc Diagnostics)
 - Vacuum Science
 - Ids and Magnets

ASTeC-What does it do?

- Projects
 - Support and development of the SRS
 - Design and procurement for DIAMOND
 - Feasibility of 4GLS and FELs for future light sources
 - Partnership with leading Linear Collider
 Projects
 - Funds High Power Proton Accelerator and Laser Accelerator research

- Replaced 'old' 50 Hz klystron 50 kV,
 15 A DC power supply
- Modular switched mode 52 kV 9 A power supply from THALES Communication

- Is a low energy ring; radiation from a variety of undulators.
- An XUV SASE free electron laser the XUV-FEL.
- A cavity-based VUV free electron laser
 the VUV-FEL.
- An integrated infra-red free electron laser – the IR-FEL.

- effectively infinite electron beam lifetime
- very small emittance
- very short pulses
- pulse structure flexibility

www.4gls.ac.uk

Diamond

- Diamond run by a joint venture company, Diamond Light Source Limited (DLS)
 www.diamond.ac.uk
- Shareholders
 - Council for the Central Laboratories of the Research Councils (CCLRC) 86%
 - Wellcome Trust 14%
- Construction cost of £235M at September 2001 prices

Diamond Organogram

Building

Building Detail

Courtesy of Crispin Wride Architectural Design Studio, JacobsGibb Ltd.

Layout

Programme

Linac	Issue tender	Oct. 14th '02
	Place order	Dec. 13th '02
	Install	Aug. '04 - Apr. '05
	Commission with beam	May. '05 – Jul. '05
Booster	Tender for main components	Feb. '03
	Order main components	Jun '03
	Install	Aug. '04 – Aug. '05
	Commission with beam	Sep. '05 - Dec. '06

Programme (biased to RF)

Storage Ring	Start to order main components	May. '03
	Install Cavities	May. '05 - Sept. '05
	Power test cavities	Sept. '05 - Nov. '05
	Install & Test Cryogenics	Dec. '04 - May. '05
	Commission with beam, no IDs	Jan Mar. '06
	Install IDs	Apr. '06
	Commission with IDs and FE	May – Jul. '06

BeamlinesInstall beamlinesJan. '05 - Aug. '06Commission with beamAug. '06 - Dec. '06

lug. 00 - Dec. 00

Diamond facility Start of operations

22nd Jan. 2007

Recruitment

- DLS0003 Group Leader for accelerator physics
- DLS0004 Group Leader for d.c. and pulsed magnets
- DLS0005 Group Leader for insertion devices
- DLS0006 Group Leader for r.f. and linac systems
- DLS0007 Group Leader for beam diagnostics and feedback
- DLS0008 Accelerator physicists
- DLS0009 Vacuum scientists and engineers
- DLS0010 Vacuum technicians
- DLS0011 Radiofrequency and linear accelerator physicists/engineers
- DLS0012 Physicists/engineers for magnet systems
- DLS0013 Physicist for insertion device systems
- DLS0014 Beam diagnostic physicists/engineers
- DLS0015 Control system electronics engineers
- DLS0016 Control system software engineers
- DLS0017 Control system relational database software engineer
- DLS0018 Mechanical project engineers
- DLS0019 Mechanical design engineers
- DLS0020 Electrical project engineers
- DLS0021 Electrical design engineers
- DLS0022 CAD/CAE systems manager
- DLS0023 Power supply engineers
- DLS0024 Health physicists

Diamond Linac Scope

- The Linac will be procured as a single turn-key system.
- Various pieces of equipment will be purchased by DLS and free-issued to the Linac Supplier, including beam diagnostic, control system and vacuum system equipment.

Diamond Linac Timeline

		2003		2004			2005							
ID	Task Name	Qtr :	Qtr 4	Qtr	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr	Qtr 2	Qtr 3
1	Linac	λ.,												$\mathbf{\nabla}$
2	Tech. Spec. ready	Ć	27/(09										
3	CFT & order													
4	Construction			I				1						
5	Installation													
6	Test											1		
7	Linac and LTB beam comm													
8	Linac Ready													29

Multi-bunch

Parameter	Specification
Bunch train length (µs)	0.3 to 1.0
Charge in bunch train (nC)	>3
Energy (MeV)	>100
Pulse to pulse energy Variation (%)	<0.25
Relative energy spread (%)	<0.5 (rms)
Norm. emittance (1 σ) (π mm mrad)	<50
Repetition rate (Hz)	1 to 5
Pulse to pulse time jitter (ps)	<100

Single Bunch

Parameter	Specification
Pulse full width (ns)	<1
Charge in bunch train (nC)	>1.5
Energy (MeV)	>100
Pulse to pulse energy Variation (%)	<0.25
Relative energy spread (%)	<0.5 (rms)
Norm. emittance (1 σ) (π mm mrad)	<50
Single bunch purity (1%)	1
Repetition rate (Hz)	1 to 5
Pulse to pulse time jitter (ps)	<100

Top-up

Top-up operation may involve two kinds of duty cycle:

1. Single bunches, or single multibunch trains, repeated at intervals of 10-300 sec.

2. Sequences of single bunches, or multi-bunch trains, at a repetition frequency of 1-5 Hz, for 1-10 sec, repeated at intervals of 1-5 min.

- Advanced Energy Systems
- ACCEL Instruments
- THALES/EuroMev/Danfysik/OI
- ·LINAC Technologies

Diamond Booster RF

See Andy Moss Talk

Diamond Storage Ring RF

- Basic Machine Parameters
- RF parameters
- Choice of cavity
- Cryogenics
- Choice of Amplifier
- Layout

Basic Machine Parameters

Electron beam energy (Storage 3.0 GeV Storage ring circumference 561.6 m 24 (6 fold symmetry) No. of cells Electron beam current 300 mA Minimum beam lifetime 10 hours Emittance - horizontal 2.7 nm-rad Emittance - vertical 0.03 nm-rad *No. of Insertion Devices (IDs)* Up to 22 *Free straight lengths for IDs* 18x5 m, 6x8 m *ID radiation apertures* Up to 10 mrads H, 1 Up to 20 mrads H, 3 *Dipole radiation apertures* ID minimum gap 10 mm Building diameter 235 m

RF Parameters

Energy (GeV)	3	3
Current (mA)	300	500
Energy Acceptance(%)	4	4
Loss/Turn (MeV)*	1.79	1.79
Acceleration Voltage (MV)	4.0	4.0
Beam Power (kW)	536	893
Number of SRF Cavities**	2/3	3
Total SRF Power (kW)	590	982

*Assuming full compliment of IDs

**Assuming 300 kW maximum power through coupler

Choice of Cavity

- Normal Conducting
- Superconducting
- Frequency
- Cornell
- KEKB

NO YES 500MHz ? ?

Cornell

Figure 1: Superconducting cavity module for KEKB

Threshold Currents

	Cornell	KEKB
V _{acc} /cell (MV)	2.5	2
Gradient (MV/m)	8.33	6.79
TM ₀₁₀ R/Q (Ω)	44.5	46.5
Length (m)	3	3.7
Max R" _{HOM} (Ω)	200	1000
Max R ^{\perp} _{HOM} (k Ω /m)	2.5	0.85
I" _{th} (Amps)	28	5.6
I⊥ _{th} (Amps)	6.66	19.6

- Operate at 4.5° K
- Heat load from either cavity is approximately the same ~ 100 W
- Losses in delivery system ~ 50 W
- Designing for 50% overcapacity
- System ~ 500 to 600 W

- Multiple screw compressors (280 kW)
- Oil removal system
- Gas handling system
- Pre-cooled LN₂ liquifier (220 L/h)
- 2000 L Dewar
- Distribution value box
- Cryogen Transfer lines

Screw compressor

Choice of Amplifier

- One Amplifier per cavity
- Day 1: Two cavities and two amplifiers, cryogenics for 3 cavities
- 2nd Phase: Install 3rd cavity and amplifier
- Finally: Up to 300 kW per cavity (500 mA with full compliment of Ids)

Klystron or IOT

Klystron

- Several bunching cavities \rightarrow Long device
- Considerable velocity spread
- Maximum gap voltage determined by the slower electrons
- Rapid reduction in efficiency for reduced output power
- High Gain

IOT

- No bunching cavities \rightarrow Shorter device
- Little velocity spread
- Higher gap voltage \rightarrow Increased output power
 - \rightarrow Higher efficiency
- Efficiency is approximately constant for reduced output power
- Low Gain

Klystron or IOT

Klystron or IOT

- Superpower Single Beam Klystron market
- Development Time and Cost of Superpower IOT
- Advantages of using Television IOTs
- Development of suitable Power
 Converters

Television IOTs

- Peak output power > 130 kW
- CW power > 80 kW
- Wide band ~ 470 810 MHz
- External Cavities
- Many Manufacturers
- For example E2V make ~ 12 per week
- Efficiency only 50%

Four IOTs Combined

Six IOTs Combined

Double-tuned IOT cluster

Central Frequency (MHz)	500
Beam Voltage (kV)	34
Grid Bias Voltage (V)	-75
Output Power (kW)	306.4
Efficiency (%)	72.6
Gain (dB)	25.1

IOTs - CPI

IOTs - E2V

IOTs - THALES

Layout

- ASTeC
 - SRS Development
 - 4GLS
- Diamond
 - Project Status
 - Linac
 - Storage Ring RF

