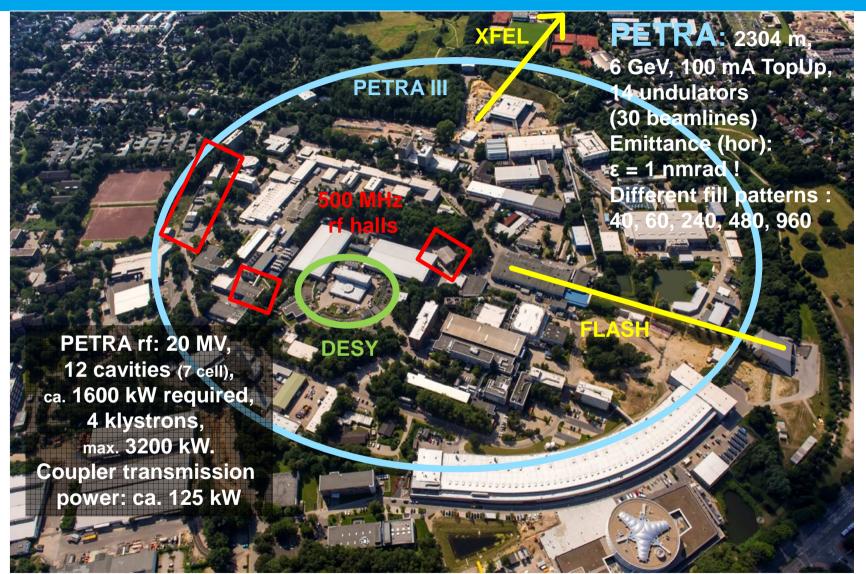
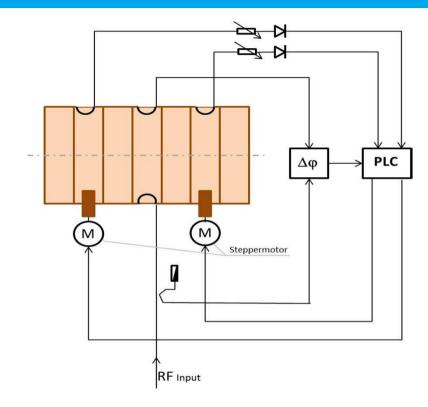
PETRA III Cavity HOM- story

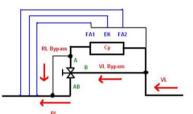


Rüdiger Onken PETRA III Cavity HOM- story Berlin, 19th September 2013

Accelerators at DESY and 500 MHz rf systems


Outline

> HOM's in PETRA III Cavities


- Principle of cavity tuning
- Fishing for HOM's
- Tuning wallpaper
- Glowing IPC's (input coupler)
 - Camera for coupler inspection
- > Breaking the window
 - Strange obsevations in 40 Bunch mode
 - Breaking a window
 - Protection of the window

HOM's in PETRA III Cavities / Principle of cavity tuning

Hydraulic scheme of temperature tuning

Tuning the Cavity by:

- keeping the difference of Phase constant
- keeping equal field distribution

Playing with attenuation of cell- signal changes field distribution in the cavity.

Can be done by software during operation.

Tuning the temperature of the Cavity by: keeping mean of cell temperatures constant

- => Bypass water
- Small temperature range
- Average precision ±0.1℃

HOM's in PETRA III Cavities / Fishing for HOM's


Some devices to suppress HOM's

16 HOM- antennas with absorbers in the feeding waveguide

Absorbed power = 80 W / system

(not coupling to fundamental mode)

Each doorknob has HOM- absorber

(not coupling to fundamental mode)

HOM's in PETRA III Cavities / Tuning wallpaper

Nevertheless we had several trips due to vacuum events or IPC- sparks Invention of "tuning wallpaper"

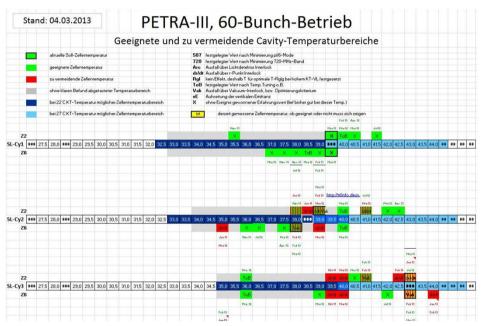
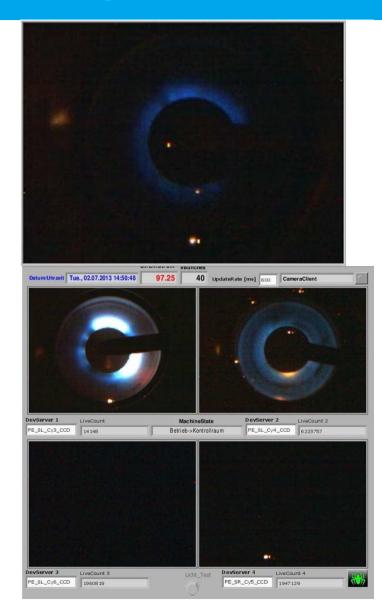


Diagram for each Cavity and bunch pattern Red= combination of celltemperatures, where event happened Green= good tuning value (x= actual tuning values) Grey= not yet tested

Within month operation got more stable After a trip one knows, where not to tune

We are still not able to destroy all the HOM's, but living with them as good as possible.

Glowing IPS's / Camera for coupler inspection



- Glass window for IPC- spark detector
- Coupler inspection through this window
- Camera to have always same conditions

Glowing IPS's / Camera for coupler inspection

During operation it turned out, that 2 of 12 IPS's are glowing or shining.

Intensity varies with pressure, tuning and ???

Magnetic fields changes the behavior but does not stop the glowing.

Spark detectors do not see this wavelength, although we had some spark interlock- events

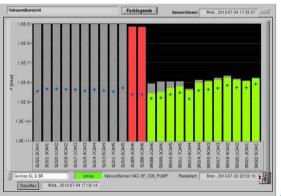
We are living with this 2 IPC's since 2009. Will be replaced in next shutdown.

Rüdiger Onken | PETRA III Cavity HOM- story | 19th September 2013 | Page 8

Breaking the window / Strange obsevations in 40 Bunch mode

Noisy TV picture

Melted electronic in camera cup


High window temperature

Especially in 40 or 60 bunch- mode a high temperature was observed at the glass window

```
Temperature strips showed T > 160 ^{\circ}C
```

=>

Vacuum crash on a service day during investigation of influence of bunch pattern to the temperature

Rüdiger Onken | PETRA III Cavity HOM- story | 19th September 2013 | Page 9

Breaking the window

Due to heating the window by HOM's:

- One window broke (didn't we had such an event some years ago? Oh yes, in 40 bunch mode ;-))
- Lots of them had crackles in the glass
- Parts where replaced and IR- thermometer was installed After recovery : Test- run 80 mA in 40 bunches for investigations
- 210°C at the window (estimate 300°C with 100 mA in 40 bunches)
- Temperature gradient, at beam dump starts with 30° / min ($200^{\circ} C => 170^{\circ} C$ in 1 minute)
- Higher Bunch numbers are less critical

Consequences:

- Limitations in current at certain bunch patterns
- Develop device to protect the window

Breaking the window / Protection of the window

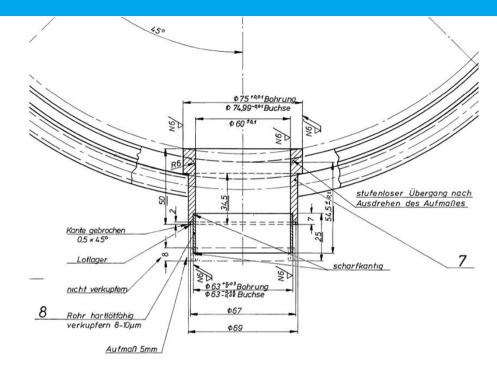
RF- filter and vacuum seal With holes for

- Camera
- Light
- Spark detector

2 week ago, installed at all PIII- cavities

Last week: Test run with 100 mA/40 Bunches no glass heating anymore

Thanks for Your attention

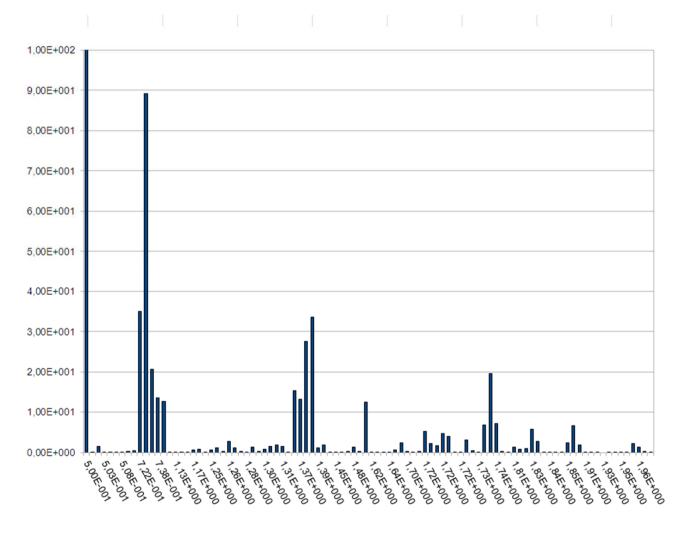


HOM to go

Glass- window flange as round waveguide: d: 60 mm l: 55 mm

Critical frequency: 2,93 GHz (H11) Wavelength @ 3 GHz: 463 mm

Frequency [MHz]	Damping (H11)[dB]
2500	15,6
2000	21,9
1500	25,7
1000	28,1
500	29,5


Estimate:

- Diameter of window pipe = 1/20 of cavity circumference
- Coupling: 1/20 of wall current goes over window pipe

> (1/20)² of power is coupled to this 60 mm hole = 50 kW/7/400 = 18 W

R/Q for PETRA 7- cell cavity [in GHz]

Rüdiger Onken | PETRA III Cavity HOM- story | 19th September 2013 | Page 14

Harmonics of revolution frequency stimulate disturbing cavity- modes (not HOM's)

fu [MHz]: 0,130121

h: 3840

Cavity-Mode [Pi]	1	5/6	2/3	1/2	1/3	1/6	0
PhiDiff zwischen Zellen [°]	180	150	120	90	60	30	0
f [MHz]	499,6646	500,09	501,34	503,28	505,19	507,21	508,57

Nb h*fu+Nb*fu

3	500,055003
8	500,705608
13	501,356213
20	502,26706
28	503,308028
35	504,218875
42	505,129722
50	506, 17069
58	507,211658
63	507,862263
68	508,512868

0,39	-0,03	-1,28	-3,22	-5,13	-7,15	-8,51
1,04	0,62	-0,63	-2,57	-4,48	-6,50	-7,86
1,69	1,27	0,02	-1,92	-3,83	-5,85	-7,21
2,60	2,18	0,93	-1,01	-2,92	-4,94	-6,30
3,64	3,22	1,97	0,03	-1,88	-3,90	-5,26
4,55	4,13	2,88	0,94	-0,97	-2,99	-4, 35
5,47	5,04	3,79	1,85	-0,06	-2,08	-3,44
6,51	6,08	4,83	2,89	0,98	-1,04	-2,40
7,55	7,12	5,87	3,93	2,02	0,00	-1,36
8,20	7,77	6,52	4,58	2,67	0,65	-0,71
8,85	8,42	7,17	5,23	3, 32	1,30	-0,06

