SRF Operation Status of SSRF

Jianfei LIU

RF Group Shanghai Institute of Applied Physics Email: LIUJF@SINAP.AC.CN

Shanghai Institute of Applied Physics, Chinese Academy of Sciences

Contents

Overview of Shanghai Light Source (SSRF)

- Booster's RF System
- Storage Ring's SRF System
- Cryogenic System
- Operation Status of SRF System

The Location of SSRF Site in Shanghai

SINAP

Layout of the SSRF complex

SSRF Booster

- Full energy booster ,optimized for topup injection;
- Two super-fold and 28 cells FODO with 8 missing dipole magnets;
- Beam emittance about 100 nm-rad @3.5 GeV for clean top-up operation;
- □ A circumference of 180m and a injection energy of 150MeV;
- **Repeat rates up to 2Hz;**

Booster Layout

Storage Ring Main paramaters: Energy: 3.5 GeV; **Circumference:** 432m; **Current:** 5/300 mA (S/M bunch); **Demittance: 3.9 mm-mrad; Strait section:** 4*12m, 16*6.5m; **RF** voltage: 4-6 MV □Max Power: ~600kW **Orbit Stability:** <10% beam size

Contents

Overview of Shanghai Light Source (SSRF)

- Booster's RF System
- Storage Ring's SRF System
- Cryogenic System
- Operation Status of SRF System

The layout of the booster RF system

- 1. One 180KW transmitter feeds power to two normal conducting 5cell cavities, ramping energy from 150 MeV to 3.5 GeV, and its LLRF is analog I/Q from ACCEL company.
- 2. It has been commissioned successfully in June of 2007

Measured parameters of booster cavities

Parameter	Specified Value	Measured cavity1/cavity2	Unit
Resonant frequency	499.654(30°C)	499.747(19°C)/499.749(18.7°C)	MHz
Coupling factor	1~1.2	1.092/1.068	
Unload quality factor	>29000	29618/29386	
Tuning-range	>+/-0.2	+0.9325/-0.2537, +0.9337/-0.2450	MHz
Tuning-precision	<100	2.08Hz/2.13	Hz
Tuning-speed	>1	2.773/2.80	kHz/s
Field flatness at 499.654MHz	<+/-5	<+/-1	%

Main Designed and Measured Parameters of Booster RF System

Parameter	Value	Unit
RF frequency	499.654	MHz
Beam energy	3.5	GeV
Energy loss per turn	0.915	MeV
Single/Multi-bunch mode beam current	2/10	mA
Beam power (Multi-bunch)	9.15	kW
RF voltage	1.80	MV
RF Phase Stability	<±1	0
RF Amplitude Stability*(*Ramping)	<±1	%

The achieved parameters of booster RF system

Mode	Phase(close loop)	Amplitude(close loop)
CW(0.1MV)	Peak-to-peak = 2.5° ; RMS= 0.5°	Peak-to-peak=4.8%; RMS= 0.96%
CW(2MV)	Peak-to-peak = 0.5° ; RMS= 0.1°	Peak-to-peak=0.35%; RMS= 0.07%
Ramp(0.1 MV~2 MV) (8 Hours stability)	Phase stability : 0.17° RMS	Amplitude stability : 0.2% RMS

Contents

Overview of Shanghai Light Source (SSRF)

- Booster's RF System
- Storage Ring's SRF System

Cryogenic System

Operation Status of SRF System

Main requirements of SRF for SSRF storage ring

RF frequency	499.654 MHz
RF voltage	≥4.0MV (5.0MV*)
RF phase stability	≤±1°
RF amplitude stability	≤±1%
Beam power	491 (625*) kW

The layout of the storage ring SRF system

Main parameters of the 350 kW loads:Average power350 kW CWReturn loss> 30 dB

Main parameters of Klystrons : RF output power: > 300 kW CW RF drive power: < 31 W Instantaneous bandwidth (-1 dB): > 2 MHz Gain: > 40 dB Efficiency: > 63 %

Main parameters of the circulators:

Forward power350 kW CWReflected power at any phase350 kW CWInsertion loss at center frequency > 26 dBInsertion loss in bandwidth> 20 dBIsolation at center frequency> 26 dBIsolation in bandwidth> 20 dBReturn loss at center frequency> 26 dBReturn loss in bandwidth> 20 dBReturn loss in bandwidth> 20 dBHandwidth> 20 dBReturn loss in bandwidth> 20 dBHandwidth> 20 dBHandwidth+/- 2 MHz

── 中国科学院上海应用物理研究所

FAT of Klystrons

中国科学院上海运用物理研究所 Shanghai Institute of Applied Physics.

Milestone of RF Transmitters

(P)	June-July 2005	Call for tender
()	Sept. 2005	Contract for RF power system
(P	Feb. 2006	Final design review of amplifiers
(P	Oct. 2006	FAT of 1st klystron
(P)	Feb March 2007	SICAT of 1st amplifier
() I	March 2007	Test of 1st circulator
(P)	April 2007	FAT of 2nd & 3rd klystron
(F	July-Oct. 2007	SICAT of 2nd & 3rd amplifiers
(B)	Oct. 2007	Test of 2nd & 3rd circulators

Chinese Academy of Sciences

KSU installation and commissioning

Results of SAT of 3 sets of 300 kW RF Amplifiers

1.07E9 @ V_{acc} =3.05MV

5.88E8 @ V_{acc} =2.86MV

7.88E8 @ V_{acc} =2.84MV

0.1

#1

#2

#3

1.45E9 @ V_{acc} =2.13MV

1.07E9 @ V_{acc} =2.0MV

1.52E9 @ V_{acc} =2.04MV

4.0

J.-F. LIU ESLS KF 2009

Horizental Tests on SSRF Site

	Parameter		Μ	asured value		
		Guarante Value	M#1	M #2	M #3	
P	Q _{external}	1.7 E5 +/- 0.3 E5	1.6E5	1.78E5	1.75E5	
	V _{acc}	> 2.0 MV	2.1 MV	2.03 MV	2.02 MV	
	P_{diss} @ Vacc = 2MV	< 70 W	60 W	46 W	< 55 W	
	Static losses	< 30 W	< 30 W	< 30 W	< 30 W	
9	Total losses @ Vacc = 2MV	< 100 W	< 90 W	< 80W	< 85 W	
	RF in SW off resonance	120 kW	110 kW*	120 kW	120kW	

Leakage Happened During Shipping

June 6, 1st Module SAT Aug. 3, 2nd Module SAT Sept. 13, 3rd Module SAT

At July 1st, two sets super. cond. modules were installed to the final location in tunnel

From Sept. 17, 3 sets superconducting modules have been put into operation.

SINAP has successfully developed its own digitalized LLRF system. Its operation was stable and reliable both for backup system and superconducting modules.

Stability of Amplitude and Phase with SC

RF frequency	499.654 MHz
RF phase stability	<u><+1</u> °
RF amplitude stability	≤±1%

Contents

Overview of Shanghai Light Source (SSRF)

- Booster's RF System
- Storage Ring's SRF System

Cryogenic System

Operation Status of SRF System

Cryogenic System

Courtesy of Cryogenic Group

Contents of Cryo-plant Specifications of Cryogenic System Flow Diagram of Cryogenic System Layout of Maim Equipments Commissioning and Test Results Milestones of Cryo-plant

Specifications of Cryogenic System

- Capacity of cryogenic plant Refrigeration mode: ≥ 650 W/4.5K ≥ 600W/4.5K (In normal operation condition)
- 2. Pressure fluctuation in LHe dewar: $\leq \pm 3.0$ mbar
- **3.** Helium level fluctuation in the dewar: $\leq 1\%$
- 4. Continuous operation time: > 8000 hours

4K Cooling Requirements from SRF Cavities

	Static load	$3 \times 30 \text{ W} = 90 \text{ W}$	
Three Cavity Cryostats	Dynamic load	$3 \times 70 \text{ W} = 210 \text{ W}$	
Cryostats	Cooling coupler	3×4 L/hr =12 L/hr	
MCTL		17.5 W	
MCTL (Air Liquid supply)		5 W	
SCTL (Rigid section)		18 W	
SCTL (Flexible section)		6 W	
2000L dewar		20 W	
Valve Box		$3 \times 10 \text{ W} = 30 \text{ W}$	
Total		$397 \mathrm{W} + 12 \mathrm{L/hr} \approx 440 \mathrm{W}$	
Safety margin		$650W/440W \approx 50\%$	

Courtesy of Cryogenic Group

中國科学院上海走的物理研究所 Shanghai Institute of Applied Physics, Chinese Academy of Sciences

Flow Diagram of Cryogenic System

Layout of Main Equipments

The Cold Box of HELIAL2000 and the 2000L dewar

HELIAL refrigeration system is based on a 2-turbine-inseries Claude cycle which is a combination of a Brayton and Joule Thomson cooling cycle.

HELIAL is a full automatic refrigerator.

Main Parameters of HELIAL 2000

Cooling Capacity	650 W @4.5 K
HP	13.43 bara
LP	1.2 bara
He mass flow rate	100 g/s
LN ₂ consumption	5.6 g/s

Main Parameters of 2000L LHe Dewar

Capacity	2000 L
Boil off rate	< 1 %
Electrical heater power	700 W
helium level fluctuation	± 3 mbar

Note: With LN₂ Precooling

Compressors and Oil Removal System

Main Parameters of Compressors

Function	M	Recovery	
Model	ESD 441	CSD122	ASD 57
Mass fow rate (g/s)	80	21	9.4
Suction pressure (bara)	1.05	1.05	1.05
Discharge pressure (bara)	15	15	15
Electrical motor rating (kW)	265	75	30
Cooling water consumption (m ³ /h)	25	4.3	
Cooling air consumption (m³/h)	9500 m3/h	1400 m3/h	5300 m3/h
Other	VFD		

Gas Yard Area

Parameters of GHe Storage Tanks

Quantity	4
Capacity	100 m ³
Design pressure	1.8 MPa gauge
Working pressure	1.35 Mpa gauge
Working temperature	-10~70 (°C)

Parameters of the LN₂ tank

Capacity	40 m ³
Design pressure	0.8 MPa gauge
Working pressure	0.08~0.4 MPa gauge
Working temperature	77~350 K
Boil off rate	< 0.5 %

Multi Channel Transfer Line

Bird view of Multi Channel Transfer Line

Commissioning and Test Results

Capacity measured at the main dewar

Operation	Heat Power	Operation time	Equivalency	Design
condition	In the dewar		Capacity*	Capacity
Maximum	635W	8 hours	657W	650W
Normal	603W	72 hours	625W	600W

*Equivalency capacity = Heat power + Heat leak of the dewar and transfer line.

Stability measurement

	Design value	Test result
Suction line pressure fluctuation	± 3 mbar	± 0.3 mbar
Main dewar pressure fluctuation	± 3 mbar	± 0.2 mbar
He Level fluctuation	±1 %	±0.3 %

Courtesy of Cryogenic Group

Capacity test result

Operation with three cavities (Aug. 1, 2008)

Courtesy of Cryogenic Group

Milestones of Cryogenic System

A emergency backup rf system was launched up in the middle of October 2007 by **RF Group**

•Nov.	2005	Contract the refrigerator to Air Liquide	
•Feb.	2007	Installation of the refrigerator	
•Nov.		Installation of the MCTL	
•Apr.	2008	Acceptance of the refrigerator	
•Jun.		Cooling down the first SRF cavity	
•Aug.		Operation with two cavities	
•Sep.		Operation with three cavities	

GHe Transfer Line (Installed in the No2. Underpass)

4 cavities Rent from PF of KEK

At Dec. 12, 2007, 3 sets normal cavaties

A installed Supercon. Cavity Was Removed from the Tunnel in Nov. 2007

June 20, 2008, NC cavities operated for 6 months was removed and replaced with two SC modules

With 3 sets Normal Cavities, we successfully got:
3.0GeV Commissioning,
100mA@3.0GeV,
200mA@2.0GeV,
300mA@1.5GeV

Contents

Overview of Shanghai Light Source (SSRF)

- Booster's RF System
- Storage Ring's SRF System
- Cryogenic System

Operation Status of SRF System in SSRF

本 論 科 等 法 法 海 法 治 物 渡 研 索 形 Shanghai Institute of Applied Physics, Chinese Academy of Sciences 27/12/2008 Beam Current 224mA

5/7/2009 Beam Current 252 mA

18/7/2009 Beam Current 300mA --the Maximum Designed Beam Current--

- •Machine protection signal
- •Temperature interlock on beam tube FBT and RBT

- **>** Scheduled Operation Time 5300 hours
- **Break-down:** 437.8 hours
- Machine shutdown : 3050.5 hours
- **For Beamlins commissioning : 1152 hours**

中国科学院上海应用物理研究厅

The Ratio of Break-down Time January ~ April 2009

- **For Beamines Commissioning: 1263 hours**
- Machine Study: 948.6 hours, Faults: 5.5%
- Hardware Faults: 121.75 hours
- Machine Shutdown: 546.7 hours
- > Availabilty 96%

PB#	1: Trips	RF trips other than vacuum (3 cavities)						
Vacuum near by		r by		Transmitters' fault			LLRF down	unknown
RFV	Vindow		6 weeks	weeks 4			1	2
			C#1		C#2	C#3		2
Date		C#1 Total	MS time	SR time	Vacuum	Vacuum		•
1st week	March 3-14	8	4	4	0	0		
2nd week	March 15-21	3	2	1	0	0		
3rd week	March 22-28	2	1	1	0	0	11000	2
4th week	March 29-April 4	7	6	1	0	0		
5th week	April 5-11	4	3	1	0	0		
6th week	April 12-18	2	1	1	0	0		
1, Cavity #2 & #3 from July, C#1 from Sept. 20 2, Once standby at 4.5 K because of its tuner 3, Parameters not optimized 4, Aging not enough (Window) 5, Bad lucky of its location just after the bending magnet								

Trip diagnostic system

1504					ceffected power	<u>~</u>
	10:52:21.9900	1	1	2.000 ms/div	1	10:52:22.0020
Page 1		···· > (-)(-)		X=10:52:22.0000384	4.839280 mSec	conds> Y=1.444829 V
_	Contraction of the local division of the loc			- 1.000 - H Jan -		2
Zoom				0	bit	Ť.
ISO10						
15012						
15013				For	ward power	
ISO14				Refl	ected power	-~
	10:52:21.9909			2.000 ms/div	1	10:52:22.0020
Page 2		···· > 💿 😁		X=10:52:21.9998230	AX=4.619013 mSec	Y=-9.520719 mV
Zoom				1.000 myon		1 00.27.22
ISO9 397.1 mV 399.4 mV						
ISO10 1.457 V 1.434 V			F			
15011 1.453 V 1.214 V				Reflected power		
3/29/2009	1 02:52:02.7525			2.000 ms/div		1 02:52:02.7680
Page 2		> 📀 🎯		X=3/30/2009 02:52:02.7	625861 🔁×=4.765659	9 mSeconds> Y=1.452770 V

Active Recording: beamtrip090329001.lrf User Mode: Review

2009-06-19-16pm: Cavity #1 quench first

Further SRF system commissioning

Power of HOM and absorber

PB#5: IF Cryo-plnat is shutoff by Elec or others, what can we do? Just watching?

Twice happened since Jan. 2008

Electricity was off, cryoplant was down suddenly, return lines of helium vessel were closed. IS THERE OTHER BETTER SOLUTION except watching?

NEXT STEPS

Shanghai Key Lab for Cryogenics & SRF Technology

NEXT STEPS Shanghai Key Lab for Cryogenics & SRF Technology

J.-F. Liu ESLS RF 2009

NEXT STEPS Shanghai Key Lab for Cryogenics & SRF Technology

- 1. MgB2 cavity to be studied
- 2. Single Cell 500MHz Cryo-Module as a spare one (Budget is READY)
- 3. Multi Cell 500 MHz Cryo-Module for Prototype of ERL (Building is under construction)

