

## SESAME RF SYSTEM

## Arash Kaftoosian



is a 2.5 GeV synchrotron radiation facility, under construction near Amman, Jordan.

The members are Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestinian Authority and Turkey

Observers: France, Germany, Greece, Italy, Japan, Kuwait, Morocco, Portugal, Russia, Sweden, UK, USA



#### SESAME RF SYSTEM

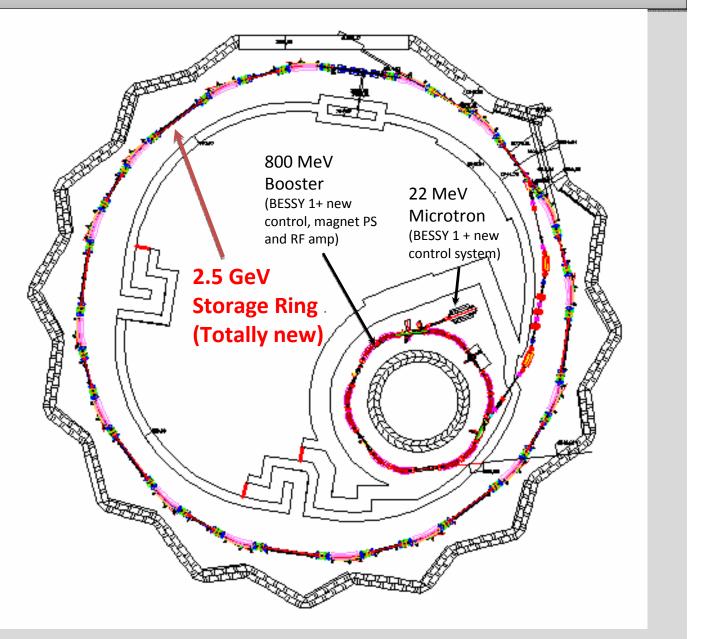
#### SESAME Location and the Member states





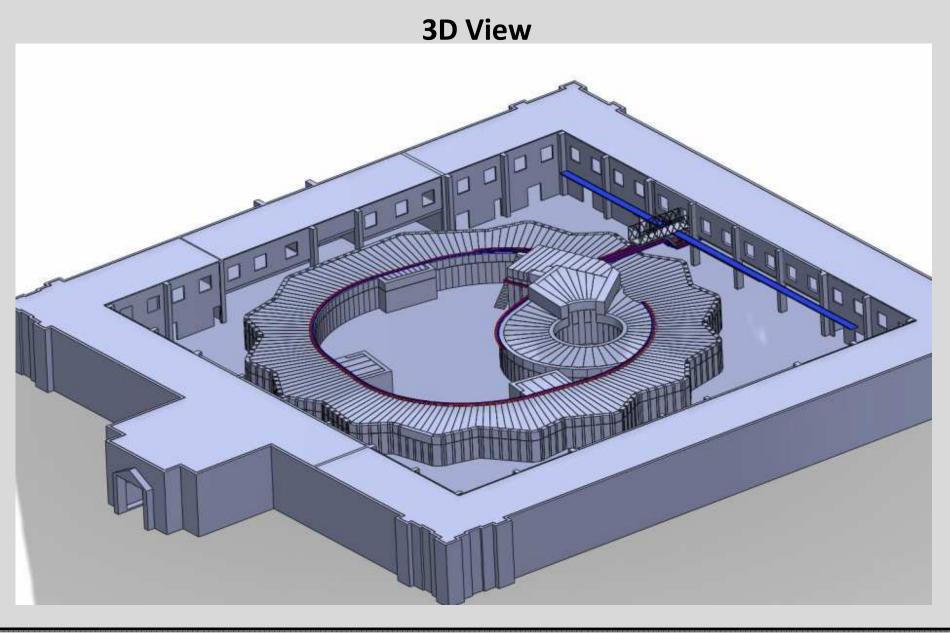
#### SESAME RF SYSTEM

Main Ring Parameters:


Energy = 2.5 GeV Circumference = 133.2 m

16 Straights sections {8 x 4.44 m + 8 x 2.38 m} Up to 28 Beamlines:

**12** Insertion Devices


**16 Dipole magnets** 

Beamlines length range from 21 m – 36.7 m





#### SESAME RF SYSTEM





## **SESAME milestones:**

Microtron commissioning:
 Successfully done in July 2009

Booster commissioning:

- To be finished in 2011
- Storage ring commissioning:
  - Planned for 2014



#### **Technical staff**

|    | Name              | Field of Activity            | Nationality |  |
|----|-------------------|------------------------------|-------------|--|
| 1  | Maher Attal       | Acc. Physics.                | Palestine   |  |
| 2  | Firas Makahleh    | Cooling system/Vacuum        | Jordan      |  |
| 3  | Seadat Varnasseri | Diagnostics & Power Supplies | Iran        |  |
| 4  | Adel Amro         | Vacuum/Layout                | Jordan      |  |
| 5  | Maher Shehab      | Mech. Engineering            | Jordan      |  |
| 6  | Arash Kaftoosian  | RF                           | Iran        |  |
| 7  | Darweesh Foudeh   | RF                           | Jordan      |  |
| 8  | Tasaddaq Ali Khan | RF                           | Pakistan    |  |
| 9  | Moh'd. Alnajdawi  | Mechanical Engineering       | Jordan      |  |
| 9  | Salman Matalgah   | Control System               | Jordan      |  |
| 10 | Ahed Aladwan      | Control System               | Jordan      |  |
| 11 | Adli Hamad        | Radiation Safety             | Jordan      |  |
| 12 | Thaer Abu Haniah  | Alignment & Survey           | Jordan      |  |
| 13 | Hamed Tarawneh    | Acc. Physics/ Magnet         | Jordan      |  |
| 14 | Moayyad Sbahi     | Cabling                      | Jordan      |  |
| 15 | Saed Budair       | Vacuum                       | Jordan      |  |

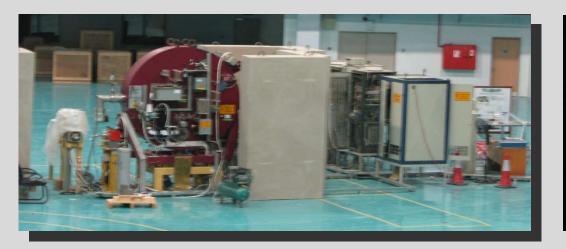


#### SESAME RF SYSTEM

## The RF Group

Arash Kaftoosian (RF, Amplifiers, Cavity, Group leader)

Darweesh Foudeh (Electronics, LLRF)


Tasaddaq Ali Khan (Control H/S, LLRF)





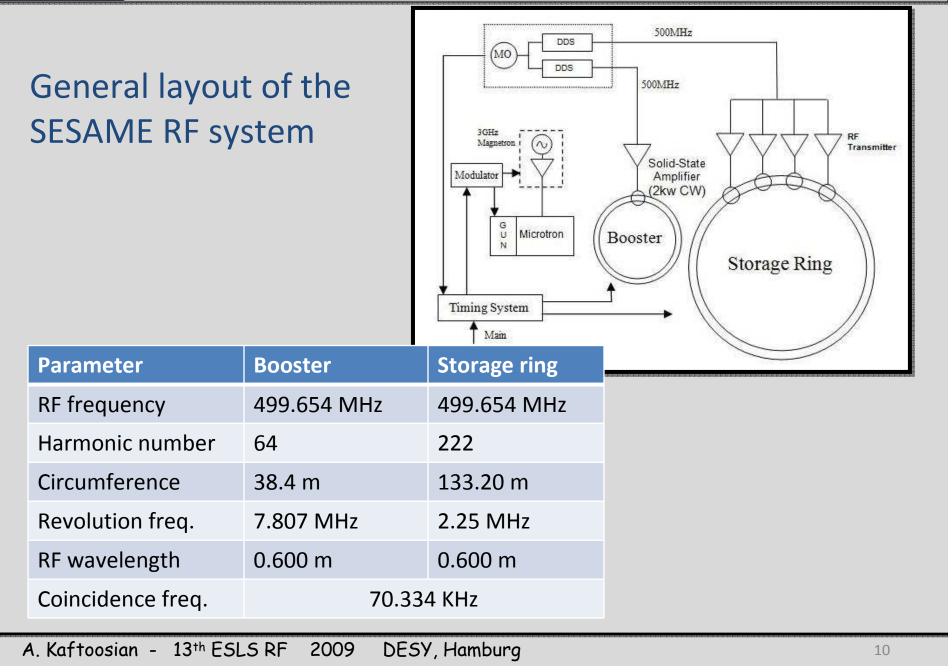
#### SESAME RF SYSTEM

## **Microtron Commissioning**





First beam obtained from Microtron in July 14, 2009


RF group was in charge of:

- ✓ The 3 GHz, 2MW (peak) RF system
- ✓ The RF gun and auxiliary gun
- $\checkmark\,$  The electronics and power supplies





#### SESAME RF SYSTEM





## Storage Ring main RF parameters

| Parameter                      | Value       |  |  |  |
|--------------------------------|-------------|--|--|--|
| Energy                         | 2.5 GeV     |  |  |  |
| Circumference                  | 133.20 m    |  |  |  |
| RF frequency                   | 499.654 MHz |  |  |  |
| Radiation loss/turn            | 590 KeV     |  |  |  |
| Beam current (maximum)         | 400 mA      |  |  |  |
| Beam power loss (bare machine) | 236 kW      |  |  |  |
| Harmonic number                | 222         |  |  |  |
| Momentum compaction factor     | 0.00833     |  |  |  |
| Total RF voltage (maximum)     | 2.4 MV      |  |  |  |
| Over voltage factor            | 4           |  |  |  |
| Number of cavities             | 4           |  |  |  |
| Energy acceptance              | 1.45 %      |  |  |  |
| Synchrotron frequency          | 37 KHz      |  |  |  |
| Synchronous phase              | 165.5 °     |  |  |  |



#### SESAME RF SYSTEM

## Booster RF system

Booster Cavity and its tuning system shipped from BESSY to the SESAME site in June 2009 (Many thanks to Dr. Ernst Weihreter and Thomas Westphal from BESSY)





Then Cavity prepared for conditioning in the RF lab (July 2009)



#### SESAME RF SYSTEM

#### Booster RF system



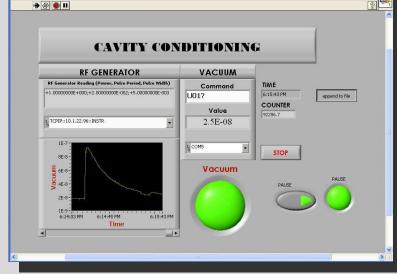
Booster LLRF (from BESSY I) tested in the RF lab



The new 2kW Solid-State amplifier as replacement for the old klystron used in BESSY I



Cavity\_Conditioning\_Final\_11.vi Edit View Project Operate Tools Window Help


Synchrotron-light for Experimental Science And Applications in the Middle East

#### SESAME RF SYSTEM

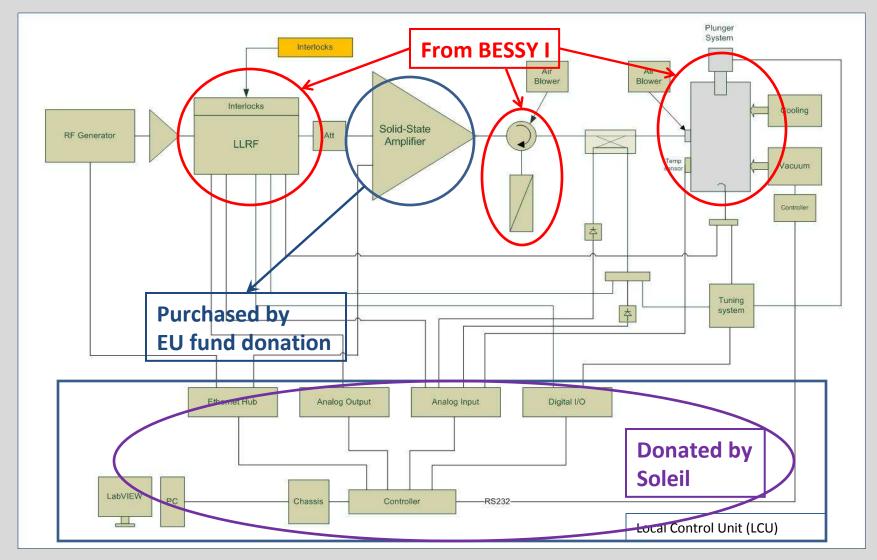
## **Booster Cavity Conditioning**

Booster cavity has been conditioned in the RF lab at SESAME site in July 2009





Cavity conditioned in about 9 hours because it had already conditioned at BESSY with 1 kW RF power




## Booster Cavity Conditioning

- Cavity conditioning is done with 1.7kW RF power
- RF starts from narrow pulse (20us/20ms) increasing pulse width up to CW in 10 steps.
- For each pulse width, RF level changes from 500W to 1.7kW in 5 steps
- Each step, of totally 50 steps, lasts for 10 minutes
- At the starting point, pressure inside the cavity was  $2 \times 10^{-9}$  mbar
- If pressure exceeds  $1 \times 10^{-7}$  mbar, RF is turned off for one minute
- After finishing the cavity conditioning, plunger was also conditioned for 1 MHz bandwidth around the fundamental frequency, divided into 10 steps, with 5 minutes pause on each frequency.



#### Booster RF system test assembly



A. Kaftoosian - 13th ESLS RF 2009 DESY, Hamburg





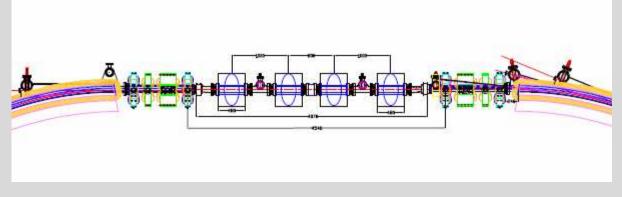
## Storage Ring RF system



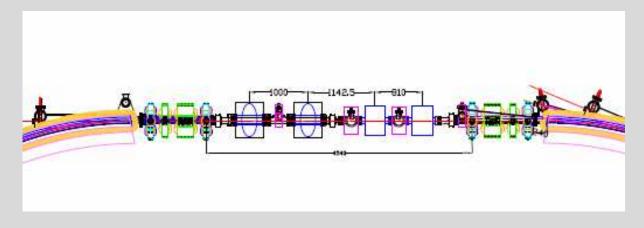
- It was initially decided to use 2 x 80 kW IOT for feeding each cavity in the Storage Ring
- Now the plan is to develop 140 kW Solid-State amplifiers to be used for each cavity (in collaboration with Soleil)
- ➢ In phase 1, two ELETTRA cavities (Donation from ELETTRA) will be used in the SR



In the second phase, two more RF plants will be added in order to achieve the maximum current as well as compensation of the power losses due to the Insertion Devices


| RF values in | phase 1 and 2 |
|--------------|---------------|
|--------------|---------------|

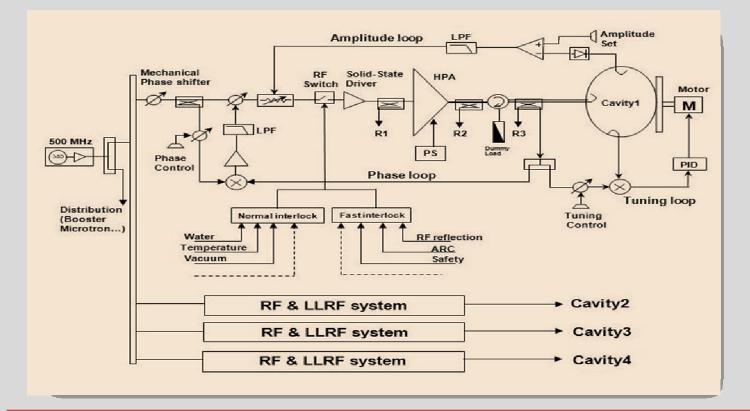
| Nb<br>of<br>Cav. | <b>I</b> b<br>mA | <b>V</b> RF<br>MV | <b>P</b> cav<br>total<br>kW | Over<br>Volt.<br>factor | RF<br>accep<br>% | <b>P</b> b<br>kW | Ptot<br>needed<br>kW | <b>P</b> <sub>RF</sub> /cav<br>needed<br>kW | Available<br>Power for<br>IDs<br>kW |
|------------------|------------------|-------------------|-----------------------------|-------------------------|------------------|------------------|----------------------|---------------------------------------------|-------------------------------------|
| 2                | 300              | 1.2               | 106                         | 2                       | 0.75             | 177              | 283                  | 141                                         | 0                                   |
| 4                | 400              | 2.4               | 212                         | 4                       | 1.45             | 236              | 448                  | 112                                         | 112*                                |


\* In case of running the transmitters with 140 kW



## RF cavities in the SR (phase 2)




Fist option: Having 4 ELETTRA cavities



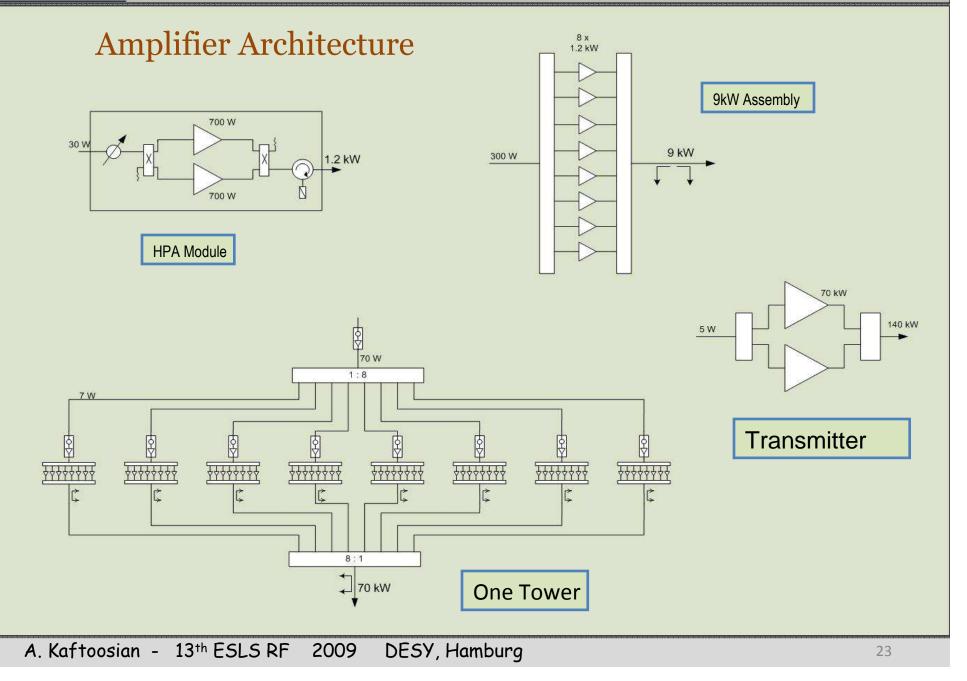
Second option: Having 2 ELETTRA cavities and 2 BESSY cavities



## Low Level Electronics (LLRF)



- So far, the above analog LLRF has been suggested for the Storage Ring
- As a strong alternative, adopting a digital LLRF for the Storage Ring RF system is being studied.




## Solid-State Amplifiers

- Two 140 kW 500 MHz solid state transmitters will be developed for feeding two ELETTRA cavities in phase 1
- Collaboration with SOLEIL is to be signed
- State-of-the-art design for power amplifier modules to have better efficiency and stability
- Candidates for transistors: BLF578 (NXP)
  PRF6VP41 (Freescale)



#### SESAME RF SYSTEM





Advantages of using balanced amplifier (HPA module)

- Good isolation between two transistors which improves amplifier stability
- Good in-out external match  $\rightarrow$  better stability
- Less connectors, cable, circulator, mechanical works, etc.
- Cancelation or attenuation of different products and harmonics
- Easy to design and integrate since good couplers are available
- Using phase shifter to minimize the phase tolerances and increase the power combining efficiency
- Easy to change the type of transistor if it is obsolete

 $\rightarrow$  Disadvantage: needs two 50  $\Omega$  terminations (low and high power)

I would like to thank the European synchrotron light sources for their valuable help and support to SESAME.

My special thanks on behalf of SESAME RF group to BESSY, SOLEIL, ELETTRA and ALBA RF experts who have been always very kind, helpful and supportive to us.

# Thank you