

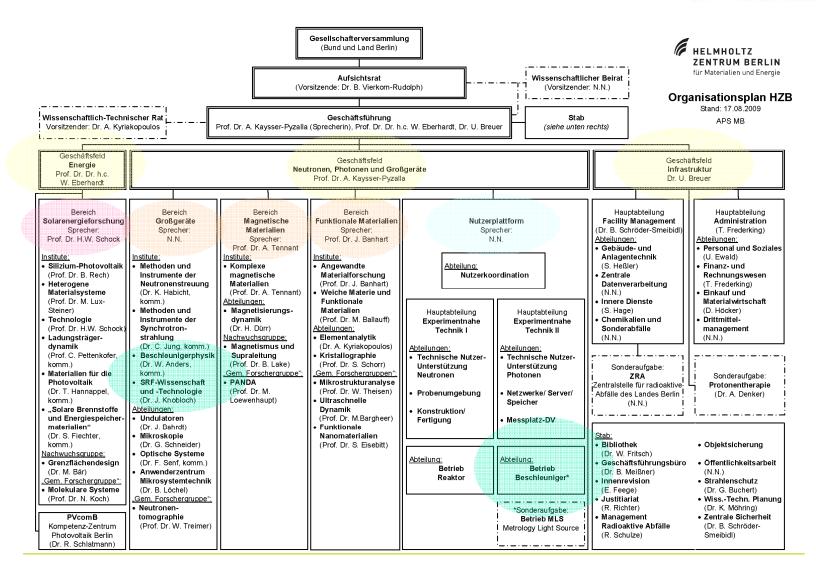
Status of RF Group HZB

(former BESSY)

Wolfgang Anders

Outline

Outline:


- BESSY + HMI = HZB
- Low level
- Klystrons ~ 80.000 h
- HV part burned
- IOT instabilities
- RF leakage on klystron

HMI + BESSY = HZB

Low level

- •Low α optic, tera hertz radiation and infrared users are limited by the noise of the transmitters.
- We are now evaluating, if we need new low level system
- •New master clock R&S SMA 100A with frequency resolution of 0.01 Hz for more precise horizontal orbit correction
- Noise at master clock ~ 70 fs → after 200 m
 cable ~ 500 fs

80.000 h klystrons

3 of 4 klystrons at BESSY II have operating time of ~ 80.000 h now

Coaxial switch at the 75 kW RF line

To be prepared in case of problems, we install a high power coaxial switch with load at each transmitter.

HV PS defekts

Burned part in HV PS

Broken brass rod at HV transformator

IOT instabilities

Last year I reported on IOT phase/amplitude instabilities on E2V and CPI IOT

Planned measurements for near future:

- Measurements at Thales IOT 1.3 GHz
- Repeat measurements after 1 year of operation on CPI
 kW 500 MHz IOT at MLS
- Mesurements on CPI klystron

Curios: energy saving lamp

RF leakage at 10 kW 1.3 GHz klystron

→ Operating a neon lamp "without energy" at RF field of 15 V/m in air

Thank You

