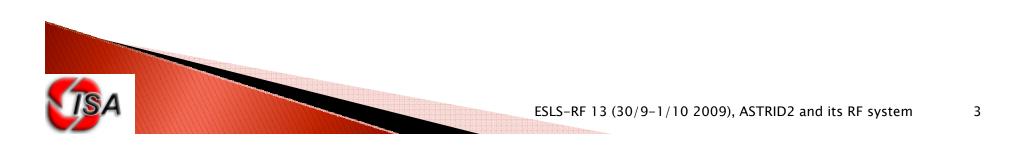

An overview the ASTRID2 storage ring and its RF system

Jørgen S. Nielsen Institute for Storage Ring Facilities (ISA) Aarhus University Denmark

ASTRID2


- ASTRID2 is the new synchrotron light source to be built in Århus, Denmark
- ▶ Dec 2008: Awarded 5.0 M€ for
 - Construction of the synchrotron
 - Transfer of beamlines from ASTRID1 to ASTRID2
 - New multipole wiggler
 - We did apply for 5.5 M€
 - Cut away an undulator for a new beamline
 - Has to be financed together with a new beamline
 - Saved some money by changing the multipole wiggler to better match our need

ASTRID2 main parameters

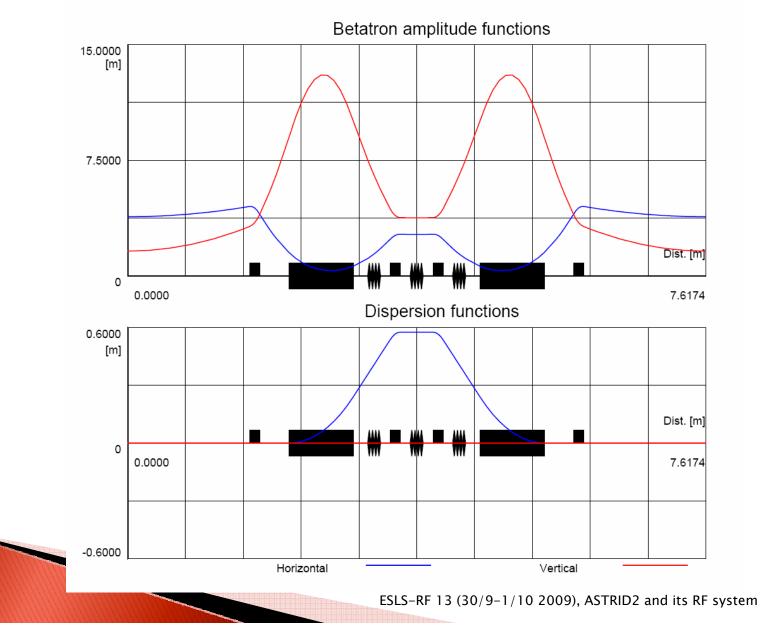
- Electron energy:
- Emittance: 12 nm
- Beam Current: 200 mA
- Circumference: 45.7 m
- 6–fold symmetry
 - lattice: DBA with 12 combined function dipole magnets

580 MeV

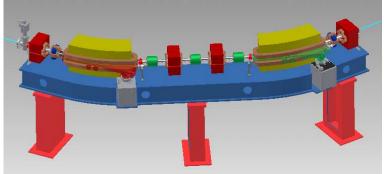
- Integrated quadrupole gradient
- 4 straight sections for insertion devices
- Will use ASTRID as booster (full energy injection)
 - Allows top-up operation

ASTRID2 Layout

ASTRID2 Layout


ASTRID2 details

General parameters		ASTRID2	ASTRID
Energy	<i>E</i> [GeV]	0.58	0.58
Dipole field	B[T]	1.192	1.6
Circumference	L[m]	45.704	40.00
Current	I[mA]	200	200
Revolution time	T[ns]	152.45	133.43
Length straight sections	[m]	~3	
Number of insertion devices		4	1
Lattice parameters			
Straight section dispersion	[m]	0	2.7
Horizontal tune	$Q_{\rm x}$	5.23	2.29
Vertical tune	Q_{ν}	2.14	2.69
Horizontal chromaticity	$dQ_{\star}/d(\Delta p/p)$	-6.4	-4.0
Vertical chromaticity	$dQ_{J}/d(\Delta p/p)$	-11.2	-7.1
Momentum compaction	αρ	0.0107	0.068
Coupling factor	<i>p</i>	5 %	5 %
Synchrotron Radiation parameters			
Synchrotron radiation integrals	<i>I₁</i> [m]	0.488182	2.7164
	$I_2[m^{-1}]$	3.870433	5.2016
	$I_{3}[m^{-2}]$	2.384181	4.3060
	I_{4} [m ⁻²]	-1.457685	1.8615
	$I_{5}[m^{-1}]$	0.130774	0.9363
Energy loss per turn	U_{a} [keV/turn]	6.2	8.3
Synchrotron radiation power	$P_{o}[kW]$	1.2	1.6
Natural emittance	ε _н [nm]	12.1	140
Diffraction limit	λ [nm]	38-101	1759
Characteristic wavelength	$\lambda_c[nm]$	4.6	3.5
Characteristic energy	ε _c [eV]	267	358
Horizontal damping time	τ _h [ms]	20.7	29.1
Vertical damping time	τ _v [ms]	28.6	18.7
Longitudinal damping time	τ_{s} [ms]	17.6	7.9
RF parameters			
Damped energy spread	σ _# / <i>E</i> [0/00]	0.433	0.416
Damped bunch length	[cm]	2.2	6.5
RF frequency	[MHz]	104.950	104.950
Revolution frequency	[MHz]	6.56	7.5
Harmonic number	h	16	14
RF voltage	[kV]	50	30
Overvoltage factor	9	8.1	4
Quantum lifetime		x	x
Synchrotron frequency	$v = \Omega/2\pi [kHz]$	10	20.6


ESLS-RF 13 (30/9-1/10 2009), ASTRID2 and its RF system

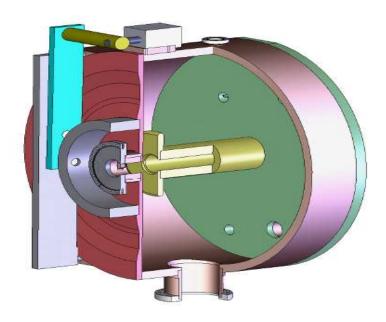
ASTRID2 lattice

ASTRID2 Status

- Sep. 2009: Order of
 - Magnets on girders for the synchrotron
 - Dipoles, Q-poles, Sextupoles, correctors

- Fast magnets with power supplies
 - Extr. Kicker, fast bumpers, inj. Septum
- Timeline
 - -2010: Design and order remaining items
 - 2011: Build and commission synchrotron
 - 2012: First beamlines on ASTRID2
 - 2013: All beamlines transferred to ASTRID2

ASTRID2 RF


- 105 MHz (like ASTRID)
- Main RF parameters
 - Harmonic: 16
 - 50-150 kV • RF voltage:
 - Synchrotron frequency:
 - Synchrotron radiation power:
 - Cavity power:

10–17 kHz ~1.4 kW

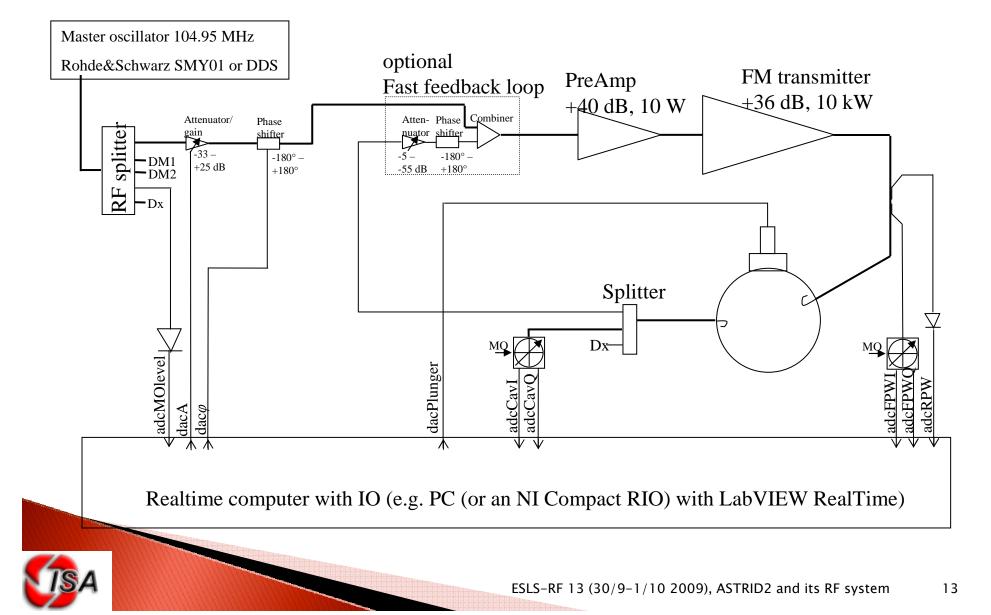
- 0.8-7 kW
- 10 kW tube-based FM transmitter (triode)
 - Tube-based FM transmitters are
 - Cheaper
 - More robust

ASTRID2 Cavity

- Collaboration with MAX-lab
 - MAX-lab needs 8 cavities (100 MHz) for MAX IV
 - We need 2 cavities (105 MHz) (a spare for ASTRID1)
 - New MAX-lab cavity
 - Based on MAX II cavity
 - Use Electron Beam Welding instead of vacuum brazing
 - Proposal: Have industry build after MAX-lab RF design
 - MAX-lab will also build a 300 MHz Landau cavity

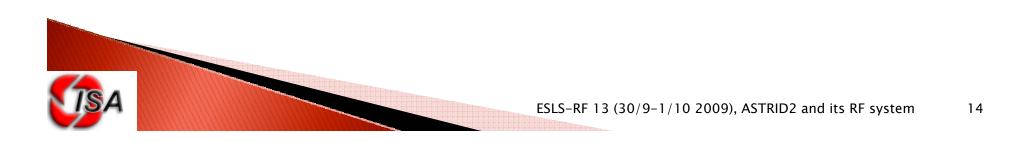
New ASTRIDx LLRF

- We will need a new LLRF for ASTRID2
- The present ASTRID LLRF is
 - Old, Analog
 - Risk of failure, not easy to repair/maintain
- We are seeking a solution which is
 - Simple (we have limited resources)
 - Adequate
- Two possibilities
 - Fully digital:
 - Direct digital sampling of down converted signals
 - Others achieve 0.1% stability
 - Analog down conversion to baseband
 - Digital control of baseband signals
 - Stability: ~1%



ASTRIDx LLRF (proposal)

- Digital control of baseband signal
 - Either with IQ modulators and demodulators or with amplitude and phase
 - A computer (PC) running LabVIEW Real-Time with FPGA equipped multifunction card to measure and control the baseband signals
 - NI PCIe-7851R/7852R:
 - Virtex 5 FPGA, 8 AI, 750 kS/s/ch, 8 AO, 1 MS/s/ch, 16 bit
 - PID Loop rates in excess of 100 kHz
 - Cavity fill time has a 3 dB point at 6 kHz
- We believe this solution is
 - Simple, but adequate
 - Flexible
 - Allows easily integrated diagnostics



ASTRIDx LLRF proposal

Conclusions

- Have shown you
 - The new ASTRID2 SR source
 - The RF system for ASTRID2
 - Proposal for new ASTRIDx LLRF
- Would appreciate feedback on our ideas
 - Analog system (digital control of baseband signals)?
 - Fully digital system with fast sampling of down converted signal?
 - Do we need the higher stability?

