

SRF Operation at TLS and Planning of SRF System for TPS

Chasen Wang On behalf of the RF Group NSRRC, Hsinchu, Taiwan

12th ESLS-RF 1/2th Oct 2008

The Taiwan Light Source (TLS) and the Taiwan Photon Source (TPS)

- Commission in Apr.; open to users in Oct. '93
- 1.3 to 1.5 GeV ramping in operation in '96
- Machine study of top-up injection in '96
- Upgrade booster for full energy injection in '00
- 1st cryogenic plant available in '04
- SRF cavity in operation in Feb. '05.
- Top-up injection routinely operated at 300 mA in Oct. '05.
- Successful long term beam tests at 400 mA in '07

TLS (300mA @1.5GeV)

- Machine energy at 3 and 3.3 GeV;
- Operating beam current of 400 mA;
- Circumference of 518 m;
- Nominal emittance of 1.6 nm-rad;

The SRF System for Taiwan Light Source (TLS)

- Cornell-type SRF module (x1)
- Home-made klystron-based crow-bar type RF transmitter (x1)
- Analog low-level RF system (PEP-I design) (x1)
- RF feed-line using WR1800 waveguide and AFT circulator

Nominal machine energy	1.5 GeV
Revolution frequency	2.49827 MHz
Maximum beam current	< 500 mA
SR energy loss per turn	<164 keV
RF harmonic number	200
Beam power	< 82 kW
RF frequency	499.654 MHz
RF voltage	1.6 MV
Number of RF cavities	1
R/Q per cell ($V^2/2Pc$)	89/2
External Q	2.2E5
Cryogenic static load	<30 W @4.5K

TLS (300mA @1.5GeV)

SRF Project Started in End of 97'

• Goal:

 Increase the maximum operating beam current in a factor of two (from 200 mA to 400 mA) to double the flux of the synchrotron light but keep the synchrotron light even more stable!

• Solution:

- SRF module is quasi-free of coupled-bunch instabilities from the beam-cavity interaction via impedances of cavity's higher-order modes;
- Replace the two operational Doris cavities with one SRF module of CESR-III design;

• Challenge: Highly reliable SRF operation

• Budget available from 2000 in 4 years;

 Routine operation of SRF module since the beginning of 2005 (one year delay).

Project goal achieved

- in terms of photon flux in winter, 2005;
- in terms of maximum beam current in summer, 2006;

Difficulties during Production of the First SRF Modules S2

1E+08

0

0.5

indow cracks

1 1,5 Vacc [MV] 2

Specifications and Integrations of Sub-systems in-House

SRF Operation at TLS:

Low RF Power Rating but under Heavy Beam Loading

	Year	Annual Beam Dose (A-hr)	User Time		Opertion Mode	IO Stability (%) (ΔΙ ₀ /Ι ₀ <0.2%)	
			Annual User Time (hr)	Up-time (%)	MTBF (hr)		
TLS	2002	N.A.	4785	958%	154.4	Decay Mode	47%
	2003	897.0	5017	97.2%	313.6	Decay Mode	86%
	2004	772.4	4235	97.5%	69 <i>A</i>	Decay Mode	85%
	2005	943.4	4576	968%	83.2	Top-up Mode(3/12)/SRF	76%
	2006	2012.9	5552	96.7%	40.8	Top-up Mode/SRF	99.0%
	2007	1964.7	5219	981%	85.6	Top-up Mode/SRF	98.6%
	2008(Jan-May)	N.A.	2272	981%	113.6	Top-up Mode/SRF	99.2%
	2008		5656				

SRF Operation at TLS: 713 Hours of Non-interrupted User Beam Time

Unscheduled Beam trip (window arcing)

SRF Operation at TLS: Heavy Fluctuations of Tuning Angle

- LN2 induced thermal oscillations;
- Fast change of tuning angle in tens of ms range;
 - Microphonics driven by stepping motor;
 - Spontaneous excitation of mechanical vibration at 37 Hz;

SRF Operation at TLS: LN2 Induced Thermal Oscillations

Fig. 1. The tuner motion is highly correlated with the temperature fluctuation of the nitrogen-cooled thermal-transition section at the round beam-tube (RBT)

SRF Operation at TLS: Microphonics Driven by Pulse of Stepping Motor

4

SRF Operation at TLS: Fast Change of Tuning Angle

		12:24:27.595170 LLRF Overdre	
780.0 mVolt	The SDE medule is protected by	1 10	:26:46.6567900
Pf ph	The SKF module is protected by		
480.0 mVolt	a)Quench – RF gap voltage too low;		
6.500 Volt			
-1.500 Volt	b)Klystron's input power too high;		
380.0 mVolt	a)Deflection power too high:	~~~~~	1
Pf DC	c)Reflection power too lingh,		
260.0 mVolt	d)Froward power too high;		
2.475 Volt			
2.105 Volt			
160.0 mVolt			4
Pr DC			
20.0 mVolt			
9.000 Volt		\sim	1
LLRF Overdre			
3.967 Volt			
WIN CCG			
0.167 Volt			
425.0 mVolt		وويده مراوا المراجعين والمراجع المراجع المراجع المراجع المراجع المراجع المراجع والمراجع	
HarmCurrent			
355.0 mVolt			
Position 5K		Al first and advances of the first state of the second	and a second second second second
1.450 Volt			
6.700 Volt			
Step Motor			
-3.300 Volt			
3.500 Volt			1
2.820 Volt	Fast change of tuning angle		
535.0 mVolt			1
TunAngSLAC	in a time scale of 20 ms		1
-165.0 mVolt			
1.140 Volt			
Pt Ph Angle 0.040 Volt			
650.6 mVolt			
eBPM Ph			
450.6 mVolt			
2/17/2008	12:24:27.310 10.00 ms/div	1	2:24:27.660

SRF Operation at TLS: Spontaneous Mechanical Vibrations at 37 Hz

- Strong mechanical vibrations at around 37 Hz observed;
- Possible reason to cause LLRF unstable;
- A false quench with insufficient Robinson phase margin;
- Similar observation at DLS and CLS during SRF processing
- Mechanical vibration mode of LHe tank or SRF cavity?

Measured transfer functions of mechanical vibration modes

SRF Operation at TLS: Spontaneous Mechanical Vibrations at 37 Hz

• According to the preliminary ANSYS simulation, the suspension system (with 4 long invar rods) of the LHe vessel is more likely responsible for the mechanical vibration at a low frequency of 37 Hz.

$$f \propto \sqrt{\frac{k}{m}} \propto \sqrt{\left(Y\frac{A}{L}\right) \cdot \frac{1}{m}}$$

~ 95 Hz

~ 135 Hz

The SRF System for Taiwan Photon Source (TPS)

- Cornell-type (x4) or KEKB-type SRF modules (x3)
- Klystron-based Thales/Thomson RF transmitters (x2)
- Solid-state RF transmitters (x2?)
- Analog low-level RF systems (x4)
- RF feed-line using WR1800 waveguide and AFT circulators

Machine Energy	3 GeV
Maximum beam current	400 mA
RF frequency	499.65 MHz
Radiation loss – bending magnets	341 kW
Radiation loss – insertion devices	423 kW
Total beam power	725 kW
Total accelerating voltage	~3.5 MV

Requirements of SRF System for TPS

- Final Goals:
 - Beam power of more than 725 kW;
 - Total RF gap voltage of around 3.5 MV;
 - Build-up of RF voltage is not a problem but delivery of beam power is a challenge.
 - The operational Qext will be extremely low because of the low total RF gap voltage.
- Commissioning Goals:
 - Many uncertainty owing to budget constraint;
 - Many comment/suggestion from the external review committee for # of SRF cavity in operation;
- Configuration of RF plant
 - Each RF plant includes one klystron, one RF transmitter (300 kW), and one SRF module;
 - Switching type HVPS for RF transmitter;
 - Analog low-level RF system (PEP-I/SLAC scheme with new RF chips);
- Time schedule:
 - Project from 2007-2013
 - Groundbreaking in spring, 2009 (hopefully)
 - Commissioning done before end of 2013
 - Stand-alone horizontal test stand to be available before end of 2009;
 - 300 kW klystron-based, switching type, RF transmitters (x2) in procurement stage;
 - Contract of SRF modules to be signed before end of 2009;
 - Delivery of SRF modules before end of 2011 (24 vs. 33 months);
 - Acceptance test of SRF modules successful before end of 2012;

Tough Challenge of Highly Reliable SRF Operation for TPS...

Successful SRF operation at TLS does NOT provide any warranty for a highly reliable SRF operation for TPS, because the RF power loading on the SRF modules will be increased significantly at TPS. And, this might make the SRF modules not reliable...

Cornell-type or KEKB-type SRF Module?

• Concerns on reliable SRF operation at a high RF power (> 180 kW)

- Solution to waveguide multipacting
 - CLS/DLS experience: Excellent low-level rf system + beam processing?
- Anonymous beam/vacuum trip: DLS's experience?

Tunability of Qext

- Maximum required RF power will be increased slowly optimal Qext different in the commissioning phase and in the machine mature phase;
 - CESR experience: using waveguide transformer for Qext tuning.
 - TLS experience: window broken.
 - CESR experience: re-optimize the window location at the standing wave minimum voltage position.
 - Using waveguide transformer with a correction factor of N
 - In-vacuum one: no effects on RF window;
 - In-air one: loading on the RF window will be increased in a factor of
 - » N, if RF window is located at minimum standing wave position;
 - \gg N², if not

Achievable Qext?

- 1.5E5 or 0.5E5?

of RF cavities required for machine operation

- Two to three for KEKB cavities (350 kW routinely operated at KEKB);
- Three to four for Cornell cavities (250 kW maximum given by ACCEL);

Qext of Cornell-Type SRF Cavity

KEKB-type or Cornell-type SRF Module?

- 500 MHz version of KEKB SRF modules (x2) is now operated at IHEP, Beijing.
 - Width of cavity equator extended to lower the cavity frequency;
 - Doorknob modified for a better RF matching;
 - HOM loads re-produced;
 - Multipacting behavior at coaxial power coupler is different
 - HV bias is required for routine operation;
- Risk of vacuum leaks of SRF module after initial thermal cycling;
- Semi-laboratory product and Japanese business style vs. 100% industrial product and western business style;
- Maintenance challenge;

In-House R&D Project: Cryostat Assembly of 500 MHz SRF Module

Cavity assembly

Cavity assembly

LN2 Cold Shock for vacuum leak check

In-House R&D Project: 500 MHz PEP-II Type RF Window

- 1. PEP-II type pre-stressed "traveling wave type" RF window (without matching posts);
- 2. Manufacture will be started in 2009.
- 3. Technical transfer of PEP-II RF cavity from SLAC was received in 2006.

In-House R&D Project: Manufacture of HOM Load

In-House Engineering Project: Horizontal Test Stand at SRF Lab

Summary

- NSRRC made a critical decision of selecting SRF Technology for our 3rd generation light source, TLS in 1999.
- We demonstrated the operation of light source with SRF modules can meet the performance requirement of a light sources at a high beam current.
- Most recent commissioned light sources selected SRF modules as their accelerating cavities. We will adopt SRF modules for our constructing 3GeV new light source, TPS, too.
- We appreciate the strong technical support on the SRF technology from Cornell and KEKB in last years.

Thank you very much for your attention!