LLRF Control System for the Diamond Storage Ring

Alun Watkins Senior RF Engineer Diamond RF Group

ESLS-RF'06 28th Sept 2006

Diamond SR LLRF: talk outline

- Summary of key specs
- MO distribution
- LLRF hardware and software
- Commissioning procedure
- First results
- Technical challenges
- Future work
- Conclusions

Key specifications

Parameter	Value	Comment	
Technology	Analogue IQ	EPICS software	
RF Frequency	499.654 MHz		
Cavity voltage range	0.125 to 2.5 MV	(per cavity)	
Amplitude regulation	0.5 % rms	Over 14 dB range	
Phase regulation	0.2 ° rms	Over 14 dB range	
Phase control range	± 180°		
Loop bandwidth	10 Hz to 100 kHz	Open loop unity gain	
Loop gain	0 to 40 dB	variable	

Designed and manufactured by:

ESLS-RF'06 28th Sept 2006

RF plant block diagram (1 of 3 amplifiers)

ESLS-RF'06 28th Sept 2006

Master Oscillator RF distribution

ESLS-RF'06 28th Sept 2006

Master Oscillator RF distribution

- IFR 2040 signal generator
 - 130ms phase/frequency transient, even for 0.1Hz step!
 - IFR looking into the problem (normal noise mode OK)
- In-house built 5W amplifier and splitter
 - ASC311 amp to be replaced with Aerial Facilities unit, due to one failure and internal switcher noise.
- LDF4.5RN-50 phase stabilised cable
 - 275m cable to RF Hall gives approx -1.2°/°C (= 6 ppm)
- So far, amplitude and phase stability of MO signal OK
- LDF1 for 10 MHz
 - reference signal useful for locking instrumentation to the MO

ESLS-RF'06 28th Sept 2006

LLRF Hardware

LLRF electronics

LLRF/VME interface

MO Monitor

Quench detector (QD)

Hytec IOC

Stepper motor driver

Stepper motor PSU's

Cavity signal patch-panel

RF preamp & signals to QD LLRF IO panel LLRF LLRF/VME interface

QD

LLRF Software

ESLS-RF'06 28th Sept 2006

Commissioning procedure

- Calibrate modulator and demodulators
- Calibrate RF paths (pickup cables and amplifier gain)
- Measure cavity tuner step/Hz
- Optimise PID parameters and motor speed in motor record
- Zero phase between forward and probe signals at resonance
- Determine 'Voltcal' factor for the cavity probe:
 - Voltcal = Vcav/ \sqrt{Probe}
 - Vcav is found from $\sqrt{4*Pfor^*R/Q^*Q_0}$ at resonance
- Verify correct detuning operation

First results

Results using EPICS 'strip tool' (1sec sample rate):

Settings	Amplitude Stability		Phase Stability	
	rms	pk-pk	rms	pk-pk
LLRF only	0.09%	-	0.05°	-
1.35 MV IQ gain=50, BW=0	0.12%	0.86%	0.53°	4.80°
1.0 MV IQ gain=70, BW=0.5	0.13%	0.86%	0.23°	2.06°
1.0 MV, IQ gain=70, BW=0.5 Detune = 20°	0.12%	1.15%	0.18°	1.53°

First results

Phase stability under tuner control $\sim \pm 15^{\circ}$: need to investigate contributions from tuner, cryogenics, amplifier etc.

Forward power variations of >10 % - need to reduce

Technical challenges

- Tuner problems: backlash, hysteresis, EPICS motor record not easy to master.
- Amplifier gain change with power and temperature
 - open loop error in predicted power output from the LLRF
 - also gain change with IOT configuration (e.g. 2 or 4 IOT's)
- Closed loop error: ~100 kV, analog offsets (and no dc integrator term?)
- Accurate power calibration: coupler, calorimetric, LLRF
 - which one is giving the true reading?
- Loop gain and BW dependant offset
 - can we add a look-up table?

Future work

- Improve operation of tuner loop
- Optimise loop gain and BW for regulation
 - requires better measurement of amplitude and phase stability than through EPICS
- Look for interaction with beam on higher BW settings
- Develop 'Operator friendly' control screen
 - combined within a combined Storage Ring RF plant screen?
- Improve calibrations of forward power and cavity voltage
- Reduce noise on Pforward and Pprobe phase readings
- Provide training and operating instructions

Conclusions

- Tuner improvement is the most urgent requirement
- Target spec of 0.5%, 0.2° rms was realistic (for an analog system)
- Offsets and values that require 'tweaking' may be the main drawbacks of our analogue system
- Require the development of a simplified operator interface
- Hardware reliability has been excellent

Acknowledgements

Diamond SR RF Group: Morten Jensen Shivaji Pande Matt Maddock Simon Rains David Spink

Diamond Controls Group: Paul Hamadyk

