SOLEIL Low level RF system

Existing:

- SOLEIL main parameters
- Booster amplifier
- Booster RF control system
- Booster and storage ring low level RF system Under development :
- Future digital low level RF of storage ring
- Microphonic measurements
- Direct and digital feedback simulation model
- Transverse feedback under development

SOLEIL main parameters

	2 (1) cryomodules
RF frequency (MHz)	352.202
Harmonic number	416
Nominal energy (GeV)	2.75
Energy loss per turn (keV)	1050 <mark>(950)</mark>
Momentum compaction factor	4.38 10 ⁻⁴
Energy damping parameter, D	6.88 10 ⁻⁴
Cavity loaded quality factor	10 ⁵
R/Q per cavity (Ohm)	45
Beam current (mA)	500 <mark>(300)</mark>
Total cavity voltage (MV)	4 (3)
Synchronous phase (°)	73.6 (71.5)

Booster Amplifier :

SYNCHROTRON

Booster RF control system

Amplifier monitoring display

SYNCHROTRON

Booster LLRF system

3 conventional « slow » control loops for the frequency, amplitude & phase remake of a LURE design adapted to the SOLEIL needs

SYNCHROTRON

Storage Ring LLRF system phase 1

SR LLRF = BO LLRF + direct RF feedback

Storage Ring digital LLRF Phase 2

SYNCHROTRON

Architecture of FPGA

Module Architecture

SYNCHROTRON

Digital IQ Demodulator

The experiments shows that we cover 0 to 360° as shown with different amplitude.

Low pass FIR filter

FIR filter was simulated with MATLAB Toolbox which provides a filter coefficients file. This file is added in ISE project root for FIR filter.

The theoretical results agree with the measurements, as shown.

Microphonic measurements

Method :

Measurements of cavity microphonic using phase detector on tuning loop.

The major disturbance, around 460 Hz, is likely related to a mechanical eigenmode of the cavity

The eigenfrequency associated to this mode may change according to the helium pressure.

Direct and digital feedback simulation model

First order cavity model

$$\dot{V}_{cr} = \frac{1}{\tau} \Big[V_{gr} - V_{cr} - tan\psi V_{ci} \Big]$$
$$\dot{V}_{ci} = \frac{1}{\tau} \Big[V_{gi} - V_{ci} + tan\psi V_{cr} \Big]$$

Beam loading

$$\begin{split} V_{cr}^{\scriptscriptstyle +} &= V_{cr}^{\scriptscriptstyle +} + \omega_{\textrm{RF}}^{\scriptscriptstyle } \left(\frac{R}{Q} \right) q \, \textrm{cos} \varphi_{\textrm{b}} \\ V_{ci}^{\scriptscriptstyle +} &= V_{ci}^{\scriptscriptstyle +} + \omega_{\textrm{RF}}^{\scriptscriptstyle } \left(\frac{R}{Q} \right) q \, \textrm{sin} \varphi_{\textrm{b}} \end{split}$$

Synchrotron motion

$$\Delta E_{i}^{n+1} = \Delta E_{i}^{n} - V_{c} \cos\left[\phi_{b0} + (\delta\phi_{b})_{i}^{n} - \phi_{c}\right] - \left(U_{0} + D\Delta E_{i}^{n}\right)$$
$$(\delta\phi_{b})_{i}^{n+1} = (\delta\phi_{b})_{i}^{n} - \frac{2\pi f_{RF} \alpha}{f_{0} E_{0}} \left\{\Delta E_{i}^{n} - V_{c} \cos\left[\phi_{b0} + (\delta\phi_{b})_{i}^{n} - \phi_{c}\right] - \frac{U_{0} + D\Delta E_{i}^{n}}{2}\right\}$$

Direct feedback

$$\widetilde{V}_{g} = \widetilde{V}_{g0} + G\left(V_{c0} - \hat{D}\widetilde{V}_{c}\right)$$
 $\widetilde{V}_{g} = \widetilde{V}_{g0} + G_{I}\left(V_{c0} - \hat{D}V_{cr}\right) - jG_{Q}\hat{D}V_{ci}$

Disturbed beam stability study

Disturbance parameters used in simulation

Injection phase error (°)	5	
Relative injection energy error (%)	-0.1	
'Real' microphonics (~200 Hz pk-pk detuning)		

Stabilized steady state : microphonics disturbance included

Direct RF and Digital I/Q feedback loop

Cavity phase residual error	0.6 ° pk-pk
Cavity voltage residual error	0.08 %

Multibunch transverse feedback: To deal with multibunch instabilities

Status : starting of this project

Transverse feedback under development

SYNCHROTRON