Status of the HOM Damped Cavity Project

E. Weihreter / BESSY

for the HOM Damped Cavity Collaboration BESSY, Daresbury Lab, DELTA, MaxLab, NTHU

Project funded by the EC under contract HPRI-CT-1999-50011

- Cavity concept and design goals
- Simulations and impedance measurement results
- Prototype cavity conditioning and first beam tests
- What lessons have we learned so far?
- Further developments
- Summary and outlook

ESLS-RF Meeting 2004

Design Goals

- Fundamental mode frequency f = 500 MHz
- Insertion length L < 0.7 m
- Shunt impedance $R > 4 M\Omega$
- Max. thermal power P = 100 kW
- Compact design to fit into <u>existing</u> SR source tunnels

Cavity Concept

ESLS-RF Meeting 2004

Simulation Models

MAFIA 3D TIME DOMAIN MODELS

~ 10⁶ mesh points 2-3 days cpu time ~18* 10⁶ mesh points 6-7 weeks cpu time

ESLS-RF Meeting 2004

BESSY

Simulations and Impedance Measurement Results

ESLS-RF Meeting 2004

Threshold impedances for different rings

ESLS-RF Meeting 2004

. ESSY

Tuning and Cavity Test at ZANON S.p.A. / Italy

ESLS-RF Meeting 2004

BESSY

Measured Impedance Spectra of

Leibniz

Gemeinschaft

Measured Cavity Parameters

Parameter	3D MWS Simulation Standard/New Method	Measurement	
fO (MHz)	500.98	499.65	
QO	32557 / 28410	26692	
Reff/Q0 (Ω)	114.5	115.4	
Reff (MΩ)	3.73 / 3.25	3.1	

Resonant frequency vs. plunger position as measured and calculated.

Nominal Frequency	499.65	MHz
Tuning Range	2	MHz
Shunt Impedance	3.1	MΩ
Unloaded Q	26692	
Thermal Power Capability	100	kW
Longitudinal HOM Impedance	≤ 4.8	kΩ
Transverse HOM Impedance	≤ 180	kΩ/m
Waveguide cut-off	615	MHz
Coupling Range	0-8	
Insertion Length	50	cm
Beam Hole Diameter	74	mm
TE11 cut-off	3.74	GHz
TM01 cut-off	2.31	GHz

ESLS-RF Meeting 2004

Prototype Cavity Conditioning

Vacuum conditioning procedure

Peak and average cavity input power during RF conditioning (p_{vac} < 5*10⁻⁷ mb)

input power (kW) peak power (5% duty cycle, 50 Hz rep. rate) average power (CW mode) . time (days)

Increase in vacuum pressure around 200W and 600 W, however no serious multipacting thresholds observed

ESLS-RF Meeting 2004

Cavity installed in the DELTA Ring

ESLS-RF Meeting 2004

First Beam Observations at 1480 MeV

DORIS Cavity

HOM Damped Cavity

CBM 55 is not driven by the cavity !!

DORIS Cavity beam spectrum at low energy

Final beam tests: measurement of coupled bunch instability thresholds at 540 MeV

ESLS-RF Meeting 2004

What lessons have we learned so far ?

♦ The tapered waveguides are the most critical components of the cavity

- about 60% of total manufacturing costs
- small tolerances
- vacuum brazing is a subtle technique, to be avoided where possible
- Engineering layout of e-beam welds and quality control during manufacturing must be improved
- Gaps between the ridges and the waveguide port wall should not be longer than 80 mm to avoid resonances coupling to the fundamental mode
- A CF 63 flange should be added at the end of the tapered waveguide
- Homogenous damping waveguides allow further reduction of HOM impedances

ESLS-RF Meeting 2004

Avoid long gaps coupling to fundamental mode

ESLS-RF Meeting 2004

Further Development: Homogenious ferrite loaded waveguide

Gemeinschaft

ESLS-RF Meeting 2004

TDR measurement set-up

Low power model of a homogenous ridged waveguide load

ESLS-RF Meeting 2004

Summary

- A HOM damped prototype cavity has been built and tested under low and high power conditions
- Impedance measurements show that
- longitudinal HOM impedances $< 4.8 \text{ k}\Omega$
- transverse HOM impedances $< 180 \text{ k}\Omega/\text{m}$
- fundamental mode impedance $3.1 \text{ M}\Omega$
- ♦ Measurements are in good agreement with calculations: Simulation tools are reliable
- Successful high power operation up to 30 kW thermal power, no serious multipacting thresholds found
- Technical improvements

- modifications e-beam welds, avoid vacuum brazing where possible
- reduced gaps between ridges and CWCT port
- CF 63 flange at the end of the CWCT
- Conceptual and technical layout has been verified. Cavity design is ready for use.

Outlook

- ♦ Final beam test of the cavity in DELTA at 540 MeV early in 2005
- Development of a high power prototype for a homogenious wavegude load is under way to reduce manufacturing cost and further reduce HOM impedances by a factor 3-4

ESLS-RF Meeting 2004