

Storage Ring RF System

F. Perez

RF System 1/23

Contents

- Power Requirements
- Transmitter Options
- Low Level Electronics Approach
- Voltage Requirements
- Cavity Comparison

Power Requirements

50	keV/turn
00	keV/turn
0	keV/turn
300	keV/turn
20	kW
	%
	00 50 00 300 20

Transmitter

- TWO power escenarios:
 ~150 kW
 - ~300 kW
- THREE transmitter type escenarios
 - High Power Klystron
 - IOT combination
 - Solid State Amplifier

Transmitter

For the case of ~300 kW IOT combination, we want to produce a combiner cavity prototype:

Can also be used as a SSA combiner...

Low Level Electronics

• IQ (DE)MODULATION

• Digital or analogue

A. Rohlev et al., CERN

Voltage Requirements

Cavity

- NC 100 MHz MAXIab
- NC 180 MHz BNIP
- SC 352 MHz SOLEIL
- NC 500 MHz
- ELETTRA, UE, ...
- SC 500 MHz CORNELL

Cavity 100 MHz

Total Voltaje	2.0	MV
No Cells/IPC	10	
Type of cavity	nc	
Voltage / cell	200	kV
R _{shunt}	1,6	MΩ
Cavity power	12,5	kW
Beam power/cav	52	kW
IPC power	65	kW
Amplifier Power	80	kW

Total Power 800 kW

REJECTED : 10 ARE TOO MANY CAVITIES

RF System 9/23

Cavity 180 MHz

Total Voltaje	2.4	MV
No Cells/IPC	4	
Type of cavity	nc	
Voltage / cell	600	kV
R _{shunt}	4.3	$M\Omega$
Cavity power	42	kW
Beam power/cav	130	kW
IPC power	172	kW
Amplifier Power	180	kW

Total Power 720 kW

Cavity 180 MHz

RF System 11/23

Cavity 352 MHz

Tuning system (180 kHz/mm,	Cryogenic transfer lines and phase separator	Total Voltaje	3.0		MV
resolution 50 nm)		No Cells/IPC	2	4	
rupture		Type of cavity	SC		
4K -> 300K	Jan Jan La	Voltage / cell	1500	750	kV
		R _{shunt}	4500		MΩ
		Cavity power	0	0	kW
Isolating 352 MHz on 1	ity HOM coupler	Beam power/cav	260	130	kW
		IPC power	260	130	kW
		Amplifier Power	300	150	kW
		Total Power	600	600	kW

ON STANDBY: ONE modul is too less and TWO too much ...

Cavity 500 MHz (1)

3.6	MV
6	
nc	
600	kV
3.4	$M\Omega$
53	kW
87	kW
140	kW
160	kW
	 3.6 6 nc 600 3.4 53 87 140 160

Total Power 960 kW

1st OPTION

Cavity 500 MHz (2)

3.6	MV
6	
nc	
600	kV
3.0	$M\Omega$
60	kW
87	kW
147	kW
160	kW
	 3.6 6 nc 600 3.0 60 87 147 160

Total Power 960 kW

2nd OPTION

Cavity 500 MHz (3)

Total Voltaje	3.6	MV
No Cells/IPC	2	
Type of cavity	SC	
Voltage / cell	1800	kV
R _{shunt}	4500	$M\Omega$
Cavity power	0	kW
Beam power/cav	260	kW
IPC power	260	kW
Amplifier Power	300	kW

Total Power 600 kW

3rd OPTION

Cavity Comparison

	(1) ELETTRA	(2) EU	(3) CORNELL
DC POWER	2.5 MW	2.6 MW	2.1 MW
WATER COOLING	220 m³/h	230 m ³ /h	140 m³/h
	Cavity Wall Dissipation	Cavity Wall Dissipation	Refrigerator

Cavity Comparison

	(1) ELETTRA	(2) EU	(3) CORNELL
SPACE	2 x 2.9 m	2 x 2.9 m	2 x 3.3 m
	3 cavities in one 4 m straight	3 cavities in one 4 m straight	1 cavity in one 4 m straight
COST ESTIMATION	9.3 M€	9.9 M€	10.6 M€
	6 x 1.55 M€	6 x 1.65 M€	2 x 5.1 M€

Cavity Comparison

RUNNING COST DIFFERENCES	(1) ELETTRA	(2) EU	(3) CORNELL
INVESTMENT	-	600 k€	1300 k€
DC POWER	400 kW	500 kW	-
RUNNING (10y) (6000 h/year)	2400 k€	3000 k€	-
MAN POWER (10y) (1.5 man/year)	-	-	900 k€
OVER 10 YEARS	+300 k€	+900 k€	-

SPACE, SERVICES and COST are NOT DECISION FACTORS

Comparison: Longitudinal HOMs

Comparison: Transverse HOMs

Stability threshold for 400 mA

Other Considerations

3rd Harmonic Cavity is interesting for the 3 cases to increase the Touschek lifetime

Transverse Feedback will be needed for broadband impedance instabilities in any case, but for the SC option will be simpler

SC option allows larger voltages (larger energy acceptance)

Reliability of the SC systems has to be considered

CONCLUSION

