Jørgen S. Nielsen

Institute for Storage Ring Facilities, Aarhus,

University of Aarhus

Denmark

What is ISA?

- ISA operates and develops the storage ring ASTRID and related facilities
- ISA staff assist internal and external users in their experiments
- ASTRID operated 5+5 weeks for ions and 18+15 weeks for SR in 2004
- ISA is used by ~150 users/per year from from Århus (1/4), DK (1/4) and abroad (1/2)

History of ISA

- 1983 First ideas about storage ring in Århus
- 1990 First operation with ions
- 1991 SX-700 monochromator installed at BESSY
- 1993 Inauguration synchrotron-radiation source
- 1994 SX-700 installed at ASTRID
- 1996-1999 national laboratory contract → undulator + 4 additional beamlines
- 1997 Additional laboratory space
- 2001 EC contract
 - Access to research infrastructure

ASTRID as a Synchrotron Radiation Source

Energy

100-580 MeV

• Injector: microtron 3 GHz, 10 mA, 1 μs, 0.2-10 Hz

• Critical energy, wavelength $\varepsilon_c = 360 \text{eV}, \lambda_c = 35 \text{Å}$

• Current 150-200 mA

• Emittance 140 ×7nm

• Lifetime 40-50 hours

• RF 105 MHz, 14 bunches, 70 kV

• One undulator 30 periods of 55 mm, min. gap 22 mm, first harmonic 11-59 eV

• 7 beamlines

ISA/ASTRID laboratory

Typical current and lifetime

The ASTRID RF system

- 105 MHz system
- One cavity
 - Copper-plated Coaxial TEM cavity
- 20 kW tube based (tetrode) FM transmitter
 - The bandwidth has been increased resulting in a lower maximum output (~8 kW)
- Standard amplitude loop
- Standard cavity tuning loop

- Fast feedback loop
 - Which we are very dependent on

The ASTRID RF system

RF power at Injection

- Want low RF voltage at injection
 - Inject (pulsed) DC beam from microtron
 - Induce strong synchrotron oscillations => poor capture efficiency
 - Improved lifetime
 - Too high RF power => shorter bunch => increased Touschek scattering
- Need enough RF power to overcome beamloading
 - Increase power as current increase
- Finding the balance!

Fighting the beamloading

Fast Feedback Loop

- Pickup the cavity voltage and feed it back to the cavity in opposite phase.
- This way any beam induced voltage is counteracted

• Problem:

- Can only achieve perfect in opposition for one frequency
- Needs to have a small group delay to have a large bandwidth

Fast Feedback Loop Principle

Reference: A. Gamp, "Servo Control of RF Cavities under Beam Loading" CERN 92-03, 1992

F. Perez et.al., "Fast Feedback Loop for Beam Loading Compensation in the ANKA Booster"

Proc. EPAC 2000, Vienna, Austria, p 1996

Fast Feedback Loop

Benefits

- Very effective to fit beamloading
- Cheap: Phase Shifter, Variable gain amplifier/attenuator, more low power

• Problem:

- Can only achieve perfect in opposition for one frequency
- Needs to have a small group delay to have a large bandwidth

Cavity Voltage with Fast Loop

Accumulation

Beam drop-out

Why is the Beam dropping out?

- Good question, which we would very much like to know the answer to.
 - Is it because the Fast Loop is ringing, or is the ringing just because the detuning is so large when the beam drops out?
 - At lower Fast Feedback Gain, we see the beam drop-out without the fast loop ringing.
 - Why the large variation in forward and reverse power?
 - Is it a signature of the fast loop working, or is it a problem?
 - Could we get some warning?

Modulation of Forward Power

- Just after a pulse from the microtron, we see a strong modulation on the forward (and reverse) power
 - We believe that the modulation is at the synchrotron frequency
 - The modulation period gets longer with more current
 - We only see it with the Fast Feedback Loop on
 - Partly induced by the kicker
 - Could be due to a small modulation of the cavity voltage (induced by the beam), which is strongly amplified by the Fast Loop

Modulation of Forward Power

Forward Power Variation

• With Amplitude Loop off, we see a change in Forward Power when scanning the RF frequency across the

cavity resonance

• True or not? (crosstalk in the directional couplers?)

- Properly due to back reflection from the transmitter due to lack of circulator
- Problem or not?
 - Maybe increases the fast loop off resonance power

The future of ISA?

Conclusions

- Shown you ASTRID and its RF system
- Shown you our Fast Feedback Loop
- Shown you some issues, which we believe are part of the limitations to the attainable current

