$7^{\text {th }}$ ESLS RF Meeting
ANKA (Karlsruhe) 2003

Status of the 100 MHz system for MAX-II and MAX-III

Åke Andersson

Status MAX 2 storage ring

Time = 18:09:40 \quad Date $=1998-11$-16

A New RF in MAX-II?

- This question was raised already in the $2^{\text {nd }}$ European RF meeting in Lund 1999. We presented the idea to shift over from our 500 MHz RF system to a 100 MHz system for the MAX-II light source.
- The background was the following:

MAX-lab

$\bullet^{\bullet \bullet *}$

- It is seen that at normal operation (with our higher harmonic cavities) the machine give us $I \times \tau \approx 4200 \mathrm{mAh}$ pretty constant over a storage period (24 hours) of MAX-II. Thus, at 200 mA we have a total lifetime of 21 h , and our measurements point at $\tau_{\text {gas }} \approx 150 \mathrm{~h}$ and $\tau_{\text {Touschek }} \approx 25 \mathrm{~h}$.
$\Rightarrow \quad$ We would gain a lot by increasing Touschek lifetime.
- The MAX-II ring has an energy acceptance of 3-3.5 $\%$, mainly due to the lattice scheme with integrated quadrupole-sextupole magnets. Meanwhile, the RF bucket height is now only 1.7%.
$\Rightarrow \quad$ We could gain by increasing the bucket height.
- The height is roughly given
ΔE \qquad (neglecting the effect from a low over-
- Instead of, as today, dissipating 18 kW in our cavity (a 3-cell DESY cavity), we would have to dissipate 112 kW (!!!!!!), to reach 3\% bucket height.

MAX-Iab

$\bullet 0^{\circ}$

- Moreover, the MAX-II ring today houses two SC wigglers, which are both taken into regular operation since September. Each one increases the electron energy loss by $20 \mathrm{keV} /$ turn, when fully excited. This calls for an even higher cavity voltage, to restore some loss of bucket height.

Power costs!!

$\Rightarrow \quad$ Seems very uneconomical to gain RF acceptance by increasing the voltage!

Look again on the bucket height formula!!

$$
\frac{\Delta E}{E} \approx \sqrt{\frac{2 e \hat{V}_{R F}}{\pi \alpha h E}}
$$

\Rightarrow Instead of increasing the cavity voltage we could simply decrease the harmonic number $h!!!!!!!!!!!!!$

Solution:

$\mathrm{RF}=100 \mathrm{MHz}$!!

$$
\left.\begin{array}{l}
h=30 \\
\hat{V}_{R F}=450 \mathrm{kV}
\end{array}\right\} \Rightarrow \frac{\Delta E}{E}=3 \%
$$

We have made a design of a 100 MHz capacity-loaded type cavity, with a $R_{s h} \equiv \frac{\hat{V}_{R F}{ }^{2}}{P_{C a v}}=3.54 \mathrm{M} \Omega$ and a Q-value of 20500 (ideal values).

Three of these cavities will provide the needed voltage, and

$$
\Rightarrow P_{\text {Cav.Tot }}=19 \mathrm{~kW}
$$

We will use one radio transmitter (ITELCO; eff $\cong 60 \%$) for each cavity,
\Rightarrow modular system; operable even if one station
fails

MAX-lab

How about the Touschek lifetime, when the number electrons per bunch is increasing with a factor of 5 ?
Since the bunch length roughly increases by the same factor, the effects pretty much cancel out.
\Rightarrow Touschek lifetime of 50 to 60 h at 200 mA , (5% coupling, as it is now).

Solution (cont'd):

Landau cavities???
Of course!!!!!

But only one!!!

Since, $f_{s}=\sqrt{\frac{h \alpha \cos \phi_{s}}{2 \pi T^{2}} \frac{e \hat{V}_{R F}}{E}}=8 \mathrm{kHz}$, in the new 100
MHz system, the shunt impedance demand to ensure Robinson stability, becomes quite relaxed.
\Rightarrow We plan then to use one 500 MHz pill-box type cavity as a fifth harmonic passive (Landau) cavity. It will alone provide sufficient shunt impedance $R_{s h} \equiv \frac{\hat{V}_{R F}{ }^{2}}{P_{C a v}}=3.65 \mathrm{M} \Omega ; Q$-value : 25200 (ideal values).

With such a cavity the bunches should be elongated roughly a factor of three.
\Rightarrow Touschek lifetime of above 150 h at 200 mA , matching the gas lifetime.

	MAX-II present	MAX-II future
Main RF system		
Frequency [MHz]	499.780	99.956
Harmonic number	150	30
No of cavity cells	3	3
No of transmitters	1	3
Cell radius [m]	0.23	0.41
Tot length of cavities [m]	1.1	1.5
Tot $\mathrm{R}_{\text {shunt }}(\equiv \mathrm{V} * \mathrm{~V} / \mathrm{P})[\mathrm{M} \Omega]$	20	9.6
Q-value	40000	19000
Tot Voltage [kV]	600 (700)	450 (530)
Cu losses [kW]	18 (25)	21 (29)
Beam power@250mA [kW]	35 (50)	35 (50)
Available power [kW]	75	90
Net power [kW]	106 (150)	93 (135)
Bucket height [\%]	1.7	3.0
Synchrotron frequency [kHz]	20	8
Rms bunch length [cm]	0.66	1.7
Landau cavity system		
Frequency [MHz]	1499.340	499.780
No of cavities	4	1
Tot $\mathrm{R}_{\text {shunt }}\left(\equiv \mathrm{V}^{*} \mathrm{~V} / \mathrm{P}\right)[\mathrm{M} \Omega]$	8	3.4
Q-value	16000	24000
Cu losses @ opt tuning [kW]	5	2.4 (3.3)
Double RF bunch length [cm]	1.9	5.3
Touschek lifetime [Ah]	8	38

MAX-III	
Main RF system	
Frequency [MHz]	99.956
Harmonic number	12
No of cavity cells	1
No of transmitters	1
Cell radius [m]	0.41
Tot length of cavity [m]	0.5
$\mathrm{R}_{\text {shunt }}\left(\equiv \mathrm{V}^{*} \mathrm{~V} / \mathrm{P}\right)[\mathrm{M} \Omega]$	3.2
Q-value	19000
Voltage [kV]	200
Cu losses [kW]	12.5
Beam power@ 500mA [kW]	6.5
Available power [kW]	30
Net power [kW]	32
Bucket height [\%]	2.0
Synchrotron frequency [kHz]	36
Rms bunch length [cm]	2.8
Landau cavity system	
Frequency [MHz]	499.780
No of cavities	1
$\mathrm{R}_{\text {shunt }}\left(\equiv \mathrm{V}^{*} \mathrm{~V} / \mathrm{P}\right)[\mathrm{M} \Omega]$	3.4
Q-value	24000
Cu losses@ opt tuning [kW]	0.5
Double RF bunch length [cm]	6.7
Touschek lifetime @ 10\% coup [Ah]	4.5

Q s.f. $=20500$
Q meas $=19000$ (92\%)
R shunt $=3.2 \mathrm{MOhm}$

00 MHz Capacity looded Savity for MAX II and III, F eq 100084
35 mm

Q s.f $=25200$
Q meas $=23800$ (94\%)
R shunt $=3.4 \mathrm{MOhm}$

SUMMARY

- Both for MAX-II and MAX-III it is favourable to choose a 100 MHz instead of a 500 MHz active system, to reach a large RF acceptance without too large power consumption.
- We get thus a modular system, four stations, with comparatively cheap FM-band transmitters.
- Together with one 500 MHz Landau cavity in each ring we can reach a quite long Touschek lifetimes in both rings.
- The same RF system is also attractive for a highbrilliance 3 GeV ring like MAX IV (see EPAC 2002).

However, one ring at a time!!!!

TIME PLAN (revised)

Shift of RF in MAX-II: Easter (or Summer) 2004.
Commissioning of MAX-III: End of 2004.
Commissioning of MAX-IV: A little later

