

PETRA III at DESY Hamburg/Germany

16 October 2003

DESY Stefan Wilke

PETRA III at DESY Hamburg/Germany

- Introduction
- Schedule
- Overview
- Parameter
 - Machine
 - RF-System
- Scenarios
- Conclusion

PETRA as a New High Brilliance Synchrotron Radiation Source

DESY plans to convert the PETRA II storage ring, which is now used as a proton/lepton preaccelerator to HERA and as a synchrotron radiation source for HASYLAB, into a new high brilliance third generation synchrotron radiation source.

- Make use of existing hardware whenever possible
- To ensure reliable machine operation
 - New vacuum system (decoupling of chamber and quads)
 - Installation of more correctors and beam position monitors
 - Replace radiation damaged coils of magnets
 - New coupled bunch feedback system
 - Etc.
 - Modernize rf system

Schedule

Machine Parameter of PETRA III

Beam Energy: 6 GeV $U_0 = 6590 \text{ keV}$ Energyloss per Turn: Beam Current (e+): $h_0 = 100 \text{ mA} (\text{later } 200 \text{ mA})$ 769 nC (1537 nC) Beam Charge: h = 3840Harmonic Number: $f_r = 0.130122 \text{ MHz}$ **Revolution Frequency:** α = 1.221* 10⁻³ Momentum Compaction Factor: = 1 nmrad !Emittance = 6.92 ms **Damping Time (longitudinal)** Undulators 13 – 15

RF – System of PETRA III

f_{RF} = 499.66 MHz Frequency: Synchrotron Frequency: $f_s = 6.31$ kHz Circumferencial Voltage: $U_c = 20 \text{ MV}$ Shunt-Impedance of one 7-cell cavity: **Beam Power:**

 $R_s = 23 M\Omega$ P_{beam} = 659 kW (1318 kW) + HOM-losses

16 October 2003

DESY Stefan Wilke

Existing RF-System of PETRA

max. 150 kW per coupler

Number of installed 7- Cell Cavities	Coupling Factor for Matching @100mA	Power Transmission per Coupler [kW]	Required Transmitter Power @ 20MV, 100mA [kW]	Max. Beam Current with one Transmitter @1440 kW [mA]
2 x 8	2.4	81	2 x 690	107
2 x 7	2.2	99	2 x 731	97
2 x 6	2.0	124	2 x 786	83
2 x 5	1.9	163	2 x 863	63
2 x 4	1.7	230	2 x 978	31

Some more ideas:

- superconductive cavities
- single-cell cavities
- IOTs

Conclusion

- Many decision are not yet made
- New LLRF (phase loops, ...) in I/Q-technique (DSP)
- Redesign of control system
- Slow archiving and trip-diagnostic is needed

But:

Final design is limited by costs, time and manpower

Thank You! Any ideas? Questions?

DESY Stefan Wilke