Synchrotron SOLEIL superconducting RF status

SOLEIL cryomodule status Cryogenic plant

C.THOMAS-MADEC

ESLS 7th - 16/10/2003

Design :

600 kW total power transferred to the beam (4 cavities)

Cell interconnecting tube diameter (400 mm) increased compared to Cu cavities \Rightarrow propagation of the HOM modes, HOM power extracted

C.THOMAS-MADEC

Design cont'd :

For HOM frequency higher than the cutoff frequency of D 400 mm tube damping in Glidcop tapers

First application of CERN technology of Nb plated Cu to a cavity with high beam loading

VNCHROTRO

4 K results at ESRF

- Passive operation with a 200 mA beam : No HOM driven instability ⇒ HOM power effectively absorbed in the dampers
- RF voltage conditioning :
 - 5 MV achieved with short RF pulses
 - 4 MV achieved in CW, with some problems :
 - high fundamental power coupling probably due to dipolar HOM couplers close to accelerating cells and notch filters not correctly tuned on fundamental frequency
 - overheating and some quench-like events with pressure bursts in LHe circuit, HOM couplers not sufficiently cooled by LHe

C.THOMAS-MADEC

4 K results at ESRF cont'd

- Cryogenic losses 140/117 W (total/static) / the calculated losses : 100/40W
- At high gradient, some multipacting observed in the main RF couplers, eventually leading to some vacuum trips
- Acceleration of 150 mA of beam and 30 hours lifetime with 3 MV from SC SOLEIL cavity and 360 kW of beam power achieved
- Successful run test at 170 mA => 380 kW beam power : no thermal run-away, stable behavior, no beam loss
- **300 K results :** SC cavity transparent to the beam

Cryomodule refurbishment

- Reduce static losses : add a copper shield cooled by liquid N₂ and thermal straps anchored on cold shield to draw heat from HOM couplers, tuning system, coaxial lines, etc...
- Improve the dipole HOM couplers tuning of notch filter : single wave bellow for better fundamental mode rejection and machining
- Improve HOM coupler cooling : by feeding LHe from bottom of the cryomodule and thermal straps
- HFSS calculation for the need of 4 HOM couplers : no need

C.THOMAS-MADEC

Refurbishment cont'd

C.THOMAS-MADEC

ESLS 7th - 16/10/2003

Refurbishment cont'd

- Replace instrumentation : radiation-proof cables and sensors with a wider temperature range to follow up cool-downs
- Modify LHe circuitry to accommodate N₂ screen and HOM LHe feeding
- Mechanical studies of the cryomodule finished
- SOLEIL beam specs revised (500mA, 2,75GeV, 1150keV radiation losses) and installation of the 2nd cryomodule ⇒ only 3 MV/cryomodule Lengthen main coupler antenna to increase coupling :
 - $Q_{ext}: 2.10^5 \rightarrow 1.10^5$ (for better matching)
 - Calculation : 10 mm
 - Measurements : 9.8 mm

Milestones

- Modifications planned partly at CEA, partly at CERN (clean room and power test-stand)
- Collaboration agreement SOLEIL CEA, SOLEIL CERN should be signed within the next weeks
- Time schedule:
 - o July 2003 : Cryomodule moved from ESRF to CERN
 - o December 2003 : Disassembly of Cryomodule at CERN
 - o Other steps : Rinsing and vertical RF test of the cavities
 - o April 2004 : Delivery of the two first HOM couplers
 - o November December 2004 : Power and cryogenic tests at CERN
 - o Beginning 2005: Start commissioning of the cryomodule on SOLEIL ring

Milestones

- Cryogenic source : call for tender will be issued in October 2003, commissioning with cryomodule beginning 2005
- Fabrication of a 2nd Module based on improved specs including modifications listed above
 - o Early 2004: Placing orders
 - o Year 2006: Installation on SOLEIL in order to reach full performance

C.THOMAS-MADEC

ESLS 7th - 16/10/2003