

The Superconducting Linac for the BESSY FEL and the HOBICAT SC Cavity Testfacility J. Knobloch, W.Anders BESSY, Berlin

Linac Layout

Main Linac Technology: TESLA

- Mature and successfully operated at TTF
- Adopt this to reduce development time and cost
- R & D work and design changes only where necessary to adapt pulsed TESLA technology for CW operation

CW Operation

	TESLA	BESSY-FEL
Duty factor	1%	100%
Gradient	23.4 MV/m	15.6 MV/m
Dyn. Load	< 1 W/cavity	~25 W/cavity
Beam current	9 mA (peak)	<75 μA
Peak RF Power	230 kW	< 15 kW
Average RF Power	~2 kW	< 5 kW
Bandwidth	400 Hz	< 40 Hz
Microphonic detun.	25 Hz	25 Hz

BESSYFEL

(Some) Issues for a CW Module

Gradient

- Bath temperature
 - Optimize bath temperature to reduce refrigeration cost
- Cryogenic load
 - Cryostat design changes for CW operation
 - Demonstrate stable operation
- Microphonics
 - Level and sources of microphonic detuning
 - Compensation of microphonics
- RF system
 - Power requirements and distribution
 - Control system (digital/analog, IQ/Amp-Phase ...?)
 - How accurately can we control the cavity voltage?
- Input coupler
 - CW and standing wave power limit

TESLA Module Redesign

Superfluid 2-Phase Flow Simulations

7

Simulations of two phase flow (Yu Xiang)

8

Microphonic Detuning

- Mechanical detuning shifts cavity resonance → More power is required to maintain a constant voltage
- Narrow bandwidth → large power reserve needed
- Note:
 - BESSY FEL beam power at 75 µA is < 1.5 kW ← microphonics dominate
 - TESLA beam power = 230 kW ← beam dominates
- For linac trip rate < few/day need at least 10 kW peak power

Passive Control of Microphonics

- Damping system?
- Type of tuner system?
- Additional cavity stiffeners?

Active Control of Microphonics

RF System Layout

Being developed in collaboration with Cornell • Use 1 klystron for each cavity Vector-sum control of narrow-bandwidth cavities difficult because of large fluctuations of V_{cav} due to microphonics - Independent, flexible operation of each cavity 15 kW of RF power per cavity Digital feedback for low level RF - Flexible Programmed start up of linac Easy implementation of feed forward

RF Control System

System being developed in collaboration with Cornell

Input Coupler

•CW (SW) power limit to be tested in collaboration with KFZ Rossendorf, Cornell & ACCEL
•ANSYS simulations at BESSY

BESSY Test Facility

- Need test facility to
 - Gain practical experience to address the outstanding issues
 - Gain operating experience of srf technology
- Components should be operated under similar conditions as in BESSY FEL
- Maintain easy access to components to permit modifications
 - Build the HoBiCaT facility for a two cavity "module"

HoBiCaT Cryostat

 HoBiCaT Cryostat being built by Linde
 Delivery 11/2003

Cavities

2 Cavities complete in 12/2003

Tuner

2 Tuners to be delivered this month Second design will be loaned by TESLA

ESLS-RF 2003

Refrigeration

- Linde refrigeration coldbox TCF50 for 4.2 K LHe in operation
- Pumps for 1.8 K operation delivered
- HoBiCaT radiation shielding in assembling phase

HoBiCaT radiation shielding₉

RF Power

- 10 kW Klystron to be delivered by CPI in 10/2003
- 20 kW IOT planned for 2004
- Transmitter power supply by FUG in 1/2004

 1 kW solid state amplifier in operation

HoBiCaT Test Program

- First Tests expected early 2004
- RF control at of narrow-bandwidth cavities
- Causes and impact of microphonics
- Tuner characterization
- Fast piezo tuning
- Pressure stability and cryogenic operation
- CW operation of input coupler
- Cavity Q measurements as fn(7) and fn(V)
- Experience with IOT transmitter

ESLS-RF 2003