Diamond RF Status

Morten Jensen

Current Status

Reminder

Linac

- 100 MeV Linac supplied by two 35 MW pulsed Klystrons
- Turn-key Contract placed with ACCEL
- Booster (see A. Moss November 2002)
- 3 GeV Booster
- Extraction at 3 GeV
- Single 5-cell cavity
- IOT based RF source

Basic Storage Ring RF Parameters

	No	IDs	Day [•]	1 IDs	22	IDs
Energy (GeV)	3	3	c:	3		3
Energy lost in dipoles (MeV/turn)	1.	0	1.	0	1	.0
Total losses (MeV/turn)	1.0	05	1.2	25	1.	78
Beam Current (mA)	300	500	300	500	300	500
Beam Power (kW)	315	525	375	625	534	890

Storage Ring RF

Superconducting Cavities

Contract placed with ACCEL for two accelerating modules

Design Review End of November

Ready for operation by August/September 2005

Key Parameters for each cavity

RF Frequency	499.654 MHz
Accelerating voltage	> 2 MV
Forward power	300 kW
Q ₀ at 2 MV	5 × 10 ⁸

Key Parameters

RF Frequency	499.654 MHz
Accelerating voltage	> 2 MV
Forward power	300 kW
Q ₀ at 2 MV	5 × 10 ⁸
Typical Q _{Ext} of the input coupler	$1.9 \times 10^5 \pm 0.5 \times 10^5$

Modes of Operation

Day One Operation

Number of Cavities	2	
Beam current	300	mA
Total accelerating voltage	3.3	MV
le voltage per cavity	1.65	MV
Q ₀	5×10 ⁸	
R _{shunt}	89×Q	Ω

Optimum External Q for match at 300 mA $Q_{Ext} = 1.6 \times 10^5$ Typical External Q set on other cavities $Q_{Ext} = 1.9 \times 10^5$

Constant Accelerating Voltage Setup for best match at maximum beam power (300 mA)

Verdict:

Match is reasonable at 300 mA for both

Modes of Operation

22 ID Operation

Number of Cavities2Beam current300Total accelerating voltage4Ie voltage per cavity2 Q_0 5×10 R_{shunt} $89 \times C$

300 mA
4 MV
2 MV
5×10⁸
89×Q₀ Ω

22 ID Operation

Optimum External Q for match at 300 mA $Q_{Ext} = 1.7 \times 10^5$ 'Standard' External Q set on other cavities $Q_{Ext} = 1.9 \times 10^5$

Verdict

Optimum Q is closer to 'standard' Q therefore whilst the power is higher at 267 kW per module the reflected power is low.

Modes of Operation

22 ID Operation

Number of Cavities	3	
Beam current	500	mA
Total accelerating voltage	4	MV
le voltage per cavity	1.3	MV
Q ₀	5×10 ⁸	
R _{shunt}	89×Q	Ω

Optimum External Q for match at 300 mA $Q_{Ext} = 0.7 \times 10^5$ 'Standard' External Q set on other cavities $Q_{Ext} = 1.9 \times 10^5$

Use of three-stub tuner to match the cavity to the RF source

Matching has been achieved with a VSWR of up to 2.5.

These are currently in operation at Cornell and have been tested to 200 kW cw and 400 kW pulsed with a repetition rate of 2 Hz

Amplifiers

Contract placed for three 300 kW turnkey RF amplifiers

Scope includes

High Voltage Power Converters
Filament and grid supplies
IOTs
EPICS Control system
Combining system
300 kW circulator
300 kW load

High Voltage Power Converter and IOTs

IOT

High Voltage Power Converter at SRS

IOT in circuit

Power Combining

# of IOTs	Phase (deg)	Reject load power (kW)	Total output power (kW)
4	0	0	320
3	50	40	200
2 (pair)	90	0	160
1	90	40	40

Power Combining

Testing

Original

- Permanent installation of 300 kW Amplifier in dedicated test facility to provide High Power Test Lab
- Conditioning and test of each SC and booster cavities in test lab
- Final test in the storage ring

Latest

- Abandon High Power Test Lab and install in Storage Ring
- Reduced risk during transportation
- Reduced bottle neck in Test Lab
- 'Save' additional 300 kW amplifier but
- Careful timing of installation and generation of Radiation Hazard

Future High Power Test Area?

What next?

Call for Tender for Cryogenic Fridge Call for Tender for Waveguide Design of Low Level RF system

Call for Tender for Booster Cavity Call for Tender for Booster Amplifier

