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In this paper we report on recent two-dimensional (2D) electron beam size measurements with a
nonconventional synchrotron radiation interferometric technique based on x-ray heterodyne near field
speckles (HNFS). The method relies on Fourier analysis of the random speckle patterns generated by a
water suspension of nanospheres to assess the full 2D transverse coherence of the incoming x rays. The
horizontal and vertical electron beam sizes are then retrieved by means of statistical optics approaches.
The manuscript thoroughly describes the HNFS technique, and shows experimental results obtained at the
ALBA Synchrotron Light Source. By changing the machine coupling, beam sizes as small as 5 μm are
measured, thus improving on past measurements reported in the literature and proving the HNFS
diagnostics suitable for low-emittance particle beams.
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I. INTRODUCTION

Two-dimensional (2D) beam size measurements are of
fundamental importance to quantify the performance of
current and future accelerators. Beam sizes, combined with
the knowledge of the machine optical parameters, enable
full characterization of the 2D emittance of electron beams
[1,2]. Moreover, the transverse profile of electron beams
determines the 2D spatial coherence properties of the
emitted synchrotron radiation, thus directly impacting
many research areas (such as physical sciences, biology
and medicine, material sciences and archaeology, to name a
few) that rely on coherence-based techniques [3].
Noninvasive beam size measurements exploiting the

emitted synchrotron radiation are mainly performed via
direct imaging or interferometry. Among direct imaging
techniques, the x-ray pinhole camera is widely used at
current third-generation light sources due to its simplicity
[4,5]. It directly provides a 2D image of the source, though

typically limited in resolution to beam sizes around 10 μm
for 15 keV x rays [6]. The actual system resolution can be
improved to a few micrometers by properly tailoring the
source-to-pinhole and pinhole-to-detector distance, as well
as by increasing the photon energy [6–8]. Interferometric
beam size measurements based on the Young’s double-slit
scheme rely on the characterization of the spatial coherence
of the emitted synchrotron light in the visible range [9,10].
Opposite to direct imaging, interferometric methods pro-
vide higher resolutions [11]. However, they are limited to
one-dimensional (1D) measurements and can only probe
two points at a time, thus making the full 2D coherence
characterization lengthy [6]. Implementations with x rays
also require challenging fabrication of high-quality aper-
tures and x-ray optical components [12,13].
In this paper we describe full 2D beam size measure-

ments with a nonconventional interferometric technique
based on x-ray heterodyne near field speckles (HNFS).
Originally conceived for particle sizing [14,15], the HNFS
technique has recently found applications in coherence
characterization of synchrotron radiation [16–20]. Here we
show that the technique is intrinsically 2D and remarkably
free of any dedicated x-ray optics. We report recent results
obtained at the hard x-ray undulator beamline NCD-
SWEET at the ALBA Synchrotron Light Source under
different beam coupling conditions. We prove that the
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method can resolve beam sizes as small as 5 μm with a
relatively simple and compact (1-m-long) experimen-
tal setup.
The paper is organized as follows. In Sec. II we review

the fundamentals of the HNFS technique. In Sec. III
we describe the experimental setup installed at the
NCD-SWEET beamline at the ALBA Synchrotron Light
Source. In Sec. IV we present recent results obtained by
changing the beam coupling in the storage ring. Finally, in
Sec. V we draw our conclusions.

II. 2D COHERENCE MAPPING WITH
HETERODYNE NEAR FIELD SPECKLES

The HNFS method relies on the scattering of the
incoming x rays, produced by the electron beam, from a
random ensemble of nanometric scatterers, in this case
spherical nanoparticles suspended in water (a colloidal
suspension). The self-referencing interference between the
weak spherical waves scattered by the sample and the
intense transilluminating x-ray beam generates a stochastic
intensity distribution known as a speckle pattern. Fourier
analysis of these speckle images allows direct 2D coher-
ence mapping of the incoming x-ray beam [16,21]. The
beam sizes along the two main axes of the electron beam
can then be retrieved from the 2D coherence map by means
of statistical optics approaches [22–24].

A. Single scatterer with a filament electron beam

We first consider the ideal case of a single scatterer
located at the origin of a ξ-η plane at a distance Z0 from the
center of the synchrotron radiation source. The emitted
x rays with wavelength λ impinge on the scatterer and
the weak scattered spherical wave interferes with the
intense transmitted photon beam. The resulting intensity
is observed across a x-y plane at a distance z downstream
the particle. The geometry of this so-called self-referencing
interference is depicted in Fig. 1.
Adopting a common notation, in the following we will

label scalar and vectorial quantities as x and x⃗, respectively.
We will also deal with highly polarized radiation, as
typically encountered in undulator sources [25], thus we
will consider only the corresponding scalar component of
the emitted electric field.
Let eðx⃗; zÞ denote the electric field of the x-ray synchro-

tron light across the observation plane and let es;refðx⃗; zÞ
be the weak spherical wave scattered by the reference
colloid, with jes;refðx⃗; zÞj ≪ jeðx⃗; zÞj. They can both be
related to the incident field across the scattering plane
eðx⃗; z ¼ 0Þ [21]:

eðx⃗; zÞ ¼ eðx⃗; z ¼ 0Þeikz

es;refðx⃗; zÞ ¼ eðx⃗ref ; z ¼ 0Þ sð0Þ
kz

eikzeik
Δr2
2z ; ð1Þ

where k ¼ 2π=λ, x⃗ref is the projection onto the x-y plane of
the transverse position of the reference colloid, sð0Þ is the
amplitude of the scattered wave in the forward direction
[26] and Δr ¼ jΔx⃗j ¼ jx⃗ − x⃗ref j.
In the following, we understand the explicit dependence

on z ¼ 0 and simply write eðx⃗Þ to describe the electric field
of the incoming synchrotron light across the scattering
plane. We work under the conditions of a slowly varying
intensity distribution of the incoming x rays, as is typical in
third-generation synchrotron light sources. By this we
mean that the intensity distribution of the emitted x rays
varies appreciably over a characteristic length scale much
larger than the transverse extension of the coherence areas
σcoh. Since we are interested in the characterization of the
spatial coherence properties of the emitted synchrotron
light, in the following we treat the intensity distribution of
the incoming x rays as uniform for notation simplicity, in
such a way that jeðx⃗Þj2 ¼ jeðx⃗refÞj2 ¼ i0 over spatial scales
comparable to σcoh. In Sec. IV we will show that the same
formalism developed hereafter can be applied also in the
presence of intensity modulations, even if irregular, as long
as they are stationary. Finally, x⃗ref ¼ ð0; 0Þ throughout
the paper.
A filament (i.e., zero-emittance) electron beam acts as a

pointlike source. In this case, the emitted synchrotron light
is fully coherent. The intensity distribution iðx⃗; zÞ resulting
from the interference between the transmitted x-ray beam
and the weak scattered spherical wave is therefore given by

iðx⃗; zÞ ¼ jeðx⃗; zÞ þ es;refðx⃗; zÞj2
≈ jeðx⃗Þj2 þ 2ℜfeðx⃗; zÞe�s;refðx⃗; zÞg

¼ i0

�
1þ 2

sð0Þ
kz

irefðx⃗; zÞ
�
; ð2Þ

FIG. 1. Geometry for the self-referencing interference between
the intense transilluminating x-ray beam and the weak scattered
spherical wave. The case of interest in this paper of a horizontally
elongated electron beam is depicted. From left to right: 2D
electron beam distribution at the source plane, time-resolved field
distribution of the emitted x rays impinging onto the scatterer, and
finally time-integrated single-scatterer interference pattern.
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where

irefðx⃗; zÞ ¼ cos

�
kΔr2

2z

�
ð3Þ

describes the intensity modulations on top of i0 due to the
single-scatterer interference fringes. Due to the peculiar
interference between the incoming beam and the scattered
spherical wave, the interference fringes described in Eq. (3)
are circular, as shown in Fig. 2(a). Their spatial frequency
progressively increases with Δx⃗. This allows to introduce a
one-to-one relation, known as the spatial scaling, which
maps spatial frequencies q⃗ into transverse displacements
Δx⃗ [16,21]:

Δx⃗ ¼ z
q⃗
k
: ð4Þ

B. Single scatterer with a finite emittance
electron beam

Opposite to the case of a pointlike source, an electron
beam with finite emittance generates synchrotron light
endowed with partial coherence. Under quasimonochro-
matic conditions [22–24], the emitted radiation is fully
temporally coherent and we can neglect temporal coher-
ence effects [20]. The transverse coherence properties of
the incoming x-ray wave front at the scattering plane are
therefore described by the normalized two-point correlation
function known in statistical optics as the 2D complex
coherence function (CCF) [22–24]:

μðx⃗2 − x⃗1Þ ¼
heðx⃗1Þe�ðx⃗2Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hjeðx⃗1Þj2ihjeðx⃗2Þj2i
p ; ð5Þ

where x⃗1 and x⃗2 are two points on the wave front of the
synchrotron radiation and h·i denotes ensemble average
over many statistical realizations of the electric field
distribution.

In general, the limited transverse coherence of a light
wave cancels high-frequency interference fringes [22–24].
In the particular case of the single-scatterer interference
pattern, this implies that Eq. (3) is modified as follows:

irefðx⃗; zÞ ¼ jμðΔx⃗Þj · cos
�
kΔr2

2z

�
: ð6Þ

Notice that in the fully coherent case jμðΔx⃗Þj ¼ 1 and
Eq. (6) reduces to Eq. (3). Examples of the resulting
interference pattern generated by a single scatterer on top of
the (uniform) x-ray intensity distribution are shown in
Figs. 2(b) and 2(c) for the cases of a round electron beam
and of a horizontally elongated electron beam, respectively.
In both cases, the outermost fringes vanish, while the
innermost remain [16,21]. This shows how coherence
works, being the ability of the radiation of generating
stable interference fringes [22–24]. On the other way
around, the visibility of the interference fringes from a
single scatterer allows to directly assess the 2D coherence
properties of the incoming radiation at the scattering plane.
In particular, many interference fringes with high spatial
frequency appear along the direction of larger coherence,
i.e., where the beam size is smaller.

C. Colloidal suspension with a finite emittance
electron beam

With a colloidal suspension composed by many scat-
terers, the observed intensity distribution is a random
speckle field, in contrast with the well-defined interference
pattern generated by a single colloid. To formally describe
the intensity distribution across the x-y plane, we assume
heterodyne conditions [14]:

jesðx⃗; zÞj ≪ jeðx⃗; zÞj; ð7Þ

where esðx⃗; zÞ ¼
P

es;jðx⃗; zÞ is the total electric field
scattered by the suspension, given by the sum of the
individual spherical waves es;jðx⃗; zÞ scattered by each
colloid. Under heterodyne conditions, the scattered field
is typically a few percent of the incoming beam, in such a
way that jesðx⃗; zÞj=jeðx⃗; zÞj < 0.1. It can be shown that
heterodyne conditions are equivalent to the single-scatter-
ing regime [26]. In practice, this implies that heterodyne
conditions are fulfilled at x-ray wavelengths by properly
diluting the sample to volume concentrations of the order of
10% or lower.
Under heterodyne conditions, the total intensity distri-

bution can be approximated as follows [16,21]:

iðx⃗; zÞ ¼ jeðx⃗; zÞ þ esðx⃗; zÞj2
≈ i0 þ 2ℜfeðx⃗; zÞe�sðx⃗; zÞg; ð8Þ

where i0 represents the intensity of the incoming beam,
ihetðx⃗; zÞ ¼ ℜfeðx⃗; zÞe�sðx⃗; zÞg is the so-called heterodyne

FIG. 2. Simulated single-scatterer interference pattern in the
case of a filament electron beam (a), a round electron beam (b)
and a horizontally elongated electron beam (c). Plots refer to
Eqs. (3) and (6), namely the interference pattern generated by a
single scatterer on top of the (uniform) x-ray intensity distribu-
tion. The side of each square is 140 μm. Simulation parameters:
λ ¼ 0.1 nm, Z0 ¼ 30 m, z ¼ 2 m, 23 μm (H) × 23 μm (V)
electron beam in (b), 45 μm (H) × 11 μm (V) electron beam
in (c).
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term describing the observed speckles and we neglect the
so-called homodyne term jesðx⃗; zÞj2 describing the mutual
interference between the spherical waves scattered by
different colloids. Equation (8) is valid with an accuracy
jesðx⃗; zÞj=2jeðx⃗; zÞj of a few percent.
By expanding the scattered field esðx⃗; zÞ and exploiting

Eqs. (2) and (6), the heterodyne term takes the following
form:

ihetðx⃗; zÞ ¼ ℜ

�
eðx⃗; zÞ

XN
j¼1

e�s;jðx⃗; zÞ
�

¼
XN
j¼1

ℜfeðx⃗; zÞe�s;jðx⃗; zÞg

¼ i0
sð0Þ
kz

XN
j¼1

irefðx⃗; zÞ ⊗ δðx⃗ − x⃗jÞ; ð9Þ

where x⃗j represents the projection onto the x-y plane of the
transverse position of the jth scatterer and ⊗ denotes a
convolution product.
Equation (9) shows that heterodyne speckles arise from

the intensity sum of many equal single-scatterer interfer-
ence patterns irefðx⃗; zÞ described by Eq. (6) and generated
by colloids randomly positioned within the suspension.
As a consequence, the power spectrum of heterodyne
speckles Iðq⃗; zÞ is proportional to the power spectrum of
the single-scatterer interference pattern Irefðq⃗; zÞ, as also
shown in Fig. 3:

Iðq⃗; zÞ ¼
				FT

�XN
j¼1

irefðx⃗; zÞ ⊗ δðx⃗ − x⃗jÞ
�
ðq⃗Þ

				
2

¼ jFTfirefðx⃗; zÞgj2 ·
				
XN
j¼1

eiq⃗·x⃗j
				
2

¼ NIrefðq⃗; zÞ; ð10Þ

where in the second line the linearity and the convolution
theorem of the Fourier transform operation have been used
[27], while in the last line jP expðiq⃗ · x⃗jÞj ¼

ffiffiffiffi
N

p
is the

limit of the random phasor sum for N ≫ 1 [22–24]. We
recall that, under heterodyne conditions, the homodyne
term jesðx⃗; zÞj2 is a few percent of the heterodyne term
ℜfeðx⃗; zÞe�sðx⃗; zÞg. Therefore, neglecting the homodyne
contribution to the power spectrum in Eq. (10) can be done
with an accuracy of at least 1% due to the square in the
Fourier transform operation.
The Fourier transform in the last line of Eq. (10), namely

the Fourier transform of the single-scatterer interference
pattern described in Eq. (6), is rigorously a convolution
integral. It reduces to a simple product under the so-
called near-field conditions [16,21] and Eq. (10) takes
the following form:

Iðq⃗; zÞ ¼ N

				μ
�
z
q⃗
k

�				
2

Tðq; zÞ; ð11Þ

where

Tðq; zÞ ¼ 2 sin2
�
zq2

2k

�
ð12Þ

and q ¼ jq⃗j.
Equation (11) shows that the power spectrum of hetero-

dyne speckles exhibits peculiar oscillations known as
Talbot oscillations, enveloped by the squared modulus of
the 2D CCF of the incoming synchrotron light at the
scattering plane. We stress that the power spectrum of
heterodyne speckles closely resembles the power spectrum
of the single-scatterer interferogram. Therefore, although
heterodyne speckles appear as a random pattern in the
direct space, coherence information is preserved in the
Fourier space, as evidenced in Fig. 3. Notice that in Eq. (11)
the same spatial scaling as in Eq. (4) allows to effectively
map spatial frequencies (Fourier-space coordinates) into
transverse displacements (direct-space coordinates). This
enables direct 2D coherence mapping.
A summary of the technique is provided in Fig. 4 for

three different electron beam configurations of interest in
the accelerator community.

FIG. 3. Simulated single-scatterer interference pattern (a) and
corresponding 2D power spectrum (b) for a horizontally elon-
gated electron beam. Simulated heterodyne speckles (c) and
corresponding 2D power spectrum (d) for the same electron beam
configuration as in (a) and (b). Notice that the power spectrum of
heterodyne speckles closely resembles the power spectrum of the
single-scatterer interferogram.
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D. The effective Talbot transfer function

The Talbot transfer function in Eq. (12) is strictly valid
for a pure 2D sample with null thickness and for an infinite
detection plane [21]. Remarkably, deviations from these
assumptions can still be described analytically.
Scattering from a 3D sample with thickness t modifies

the Talbot oscillations as follows [28]:

T3Dðq; zÞ ¼
1

t

Z
zþt=2

z−t=2
Tðq; z0Þdz0

¼ 1 − cos

�
zq2

k

�
sinc

�
tq2

2k

�
: ð13Þ

A finite detection screen with lateral size L induces a
tapering of the Talbot oscillations for increasing q (walk-off
effect) [29]:

Twoðq; zÞ ¼
�
1þ βðq; zÞ½Tðq; zÞ − 1� q ≤ kL=ð2zÞ
1 q > kL=ð2zÞ

βðq; zÞ ¼ L − 2zq=k
Lþ 2zq=k

: ð14Þ

By combining Eqs. (13) and (14), the most general case
where both effects are simultaneously present is described
by the following transfer function:

Teffðq; zÞ ¼
1

t

Z
zþt=2

z−t=2
Twoðq; z0Þdz0: ð15Þ

The solution of Eq. (15) is generally obtained with
numerical methods. In Fig. 5 we compare both T3Dðq; zÞ
and Twoðq; zÞ against Tðq; zÞ for the actual experi-
mental parameters described in Sec. III. The comparison
evidences that Talbot oscillations are mainly affected by the
walk-off effect, whereas the 3D effect is negligible with the
parameters of interest here, and Eq. (15) reduces to Eq. (14)
in this case.

E. General formulation of the HNFS technique

In practice, other contributions that were not considered
in the previous formulation affect the envelope of the Talbot
oscillations.
The finite resolution of the detection system blurs high-

frequency interference fringes, which eventually vanish.
This is described in the direct space by the convolution
of Eq. (9) with the point-spread function of the detection
system, and in the Fourier space by the multiplication of
Eq. (11) with the modulation transfer function Hðq⃗Þ of the
detection system [27].
In addition, colloids do not scatter light isotropically

[26]. As a result, the Talbot oscillations are modulated by

FIG. 4. Summary of the HNFS technique showing the relation between the 2D profile of the electron beam [(a), (g), and (m)], the
modulus of the 2D CCF μðΔx⃗Þ of the emitted synchrotron radiation [(b), (h), and (n)], the single-scatterer interference fringes irefðx⃗; zÞ
[(c), (i), and (o)] and the corresponding 2D power spectrum Irefðq⃗; zÞ [(d), (j), and (p)], the heterodyne speckle pattern ihetðx⃗; zÞ generated
by a large number of scatterers [(e), (k), and (q)] and finally the 2D power spectrum of heterodyne speckles Iðq⃗; zÞ [(f), (l), and (r)]. The
case of a filament electron beam [(a), (b), (c), (d), (e), and (f)], a round electron beam [(g), (h), (i), (j), (k), and (l)] and a horizontally
elongated electron beam [(m), (n), (o), (p), (q), and (r)] are depicted. Notice the relation between the 2D transverse profile of the electron
beam, the 2D CCF of the emitted synchrotron light and the envelope of the Talbot oscillations in the 2D power spectrum.
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the particle form factor Sðq⃗Þ which represents the relative
strength of the intensity scattered along the wave vector
q⃗ [15].
Finally, an additive term Pðq⃗Þ is introduced to account

for any noise contribution, mainly shot noise and read-
out noise.
Equation (11) is therefore generalized as follows [16,21]:

Iðq⃗; zÞ ¼ Teffðq; zÞ
				μ
�
z
q⃗
k

�				
2

Hðq⃗ÞSðq⃗Þ þ Pðq⃗Þ: ð16Þ

F. The importance of the spatial scaling

The spatial scaling of Eq. (4) enables direct 2D coher-
ence measurements by mapping Fourier-space coordinates
into transverse displacements. We also notice that the walk-
off effect has a unique representation in terms of direct
space coordinates since Eq. (14) exhibits the same spatial
scaling as in Eq. (4). As a consequence, data acquired at
different sample-detector distances can be consistently
compared upon the spatial scaling and the envelopes of
the Talbot oscillations are described by

upper → uðΔxiÞ ¼ ½1þ βðΔxiÞ�jμðΔxiÞj2
lower → wðΔxiÞ ¼ ½1 − βðΔxiÞ�jμðΔxiÞj2; ð17Þ

where eitherΔxi ¼ Δx orΔxi ¼ Δy along the horizontal or
vertical direction, respectively. An example of the upper

and lower envelope along the horizontal direction is shown
in Fig. 6.

G. Effects of limited temporal coherence
on source size measurements

In general, the limited temporal coherence of the emitted
synchrotron light might contribute to the loss of visibility of
the interference fringes from a single scatterer. This would
imply an additional decay of the Talbot oscillations in the
power spectrum of heterodyne speckles from a colloidal
suspension [19–21]:

Iðq⃗; zÞ ¼ Teffðq; zÞ
				μ
�
z
q⃗
k

�				
2

·

				γ
�
zq2

2ck2

�				
2

×Hðq⃗ÞSðq⃗Þ þ Pðq⃗Þ; ð18Þ

where c is the speed of light and γðΔtÞ ¼ γðt2 − t1Þ ¼
heðt1Þe�ðt2Þi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjeðt1Þj2ihjeðt2Þj2i

p
describes the temporal

coherence of the emitted synchrotron light and is known in
statistical optics as the complex degree of self-coherence

(a) (b)

(c) (d)

(e) (f)

FIG. 5. Effect of 3D scattering [(a), (c), and (e)] and walk-off
[(b), (d), and (f)] on Talbot oscillations for three progressively
increasing sample-detector distances z1 ¼ 5 cm [(a) and (b)],
z2 ¼ 25 cm [(c) and (d)] and z3 ¼ 50 cm [(e) and (f)] and for the
actual experimental parameters described in Sec. III.

(a)

(b)

FIG. 6. Simulated horizontal profiles of 2D power spectra for
three different distances z1 ¼ 10 cm, z2 ¼ 30 cm and z3 ¼
50 cm as a function of Fourier wave vectors (a) and transverse
displacements (b). Upon the spatial scaling, Talbot maxima and
minima clearly fit onto the two unique master curves of the upper
and lower envelope uðΔxÞ and wðΔxÞ, respectively, as described
by Eq. (17).
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(CDC) [22–24]. It would result in an increased source size
if not properly accounted for. However, Eq. (18) also shows
that spatial and temporal coherence effects can actually be
disentangled, thus independently characterized, from the
superposition of data at different z upon either the spatial
scaling Δx⃗ ¼ zq⃗=k (spatial master curve criterion) or the
temporal scaling Δt ¼ zq2=2ck2 (temporal master curve
criterion), respectively [19–21]. For the case of interest
here, radiation is quasimonochromatic, as we will detail in
Sec. III, and γðΔtÞ ¼ 1 in Eq. (18), thus temporal coher-
ence effects are negligible.

III. HNFS SETUP AT THE NCD-SWEET
BEAMLINE (ALBA)

We applied the HNFS method to perform 2D electron
beam size measurements at the hard x-ray undulator
beamline NCD-SWEET of the ALBA Synchrotron Light
Source. The experimental setup is sketched in Fig. 7 and
the main parameters are summarized in Table I.
The radiation source is an in-vacuum undulator with

a number of periods Nw ¼ 92 and period length λw ¼
21.6 mm. X rays are generated by the electron beam
with nominal energy E ¼ 2.98 GeV. A Si(111) channel-
cut monochromator selects the radiation wavelength
λ ¼ 0.1 nm, corresponding to the 7th harmonic of the
undulator, providing a quasimonochromatic beam with a
relative bandwidth Δλ=λ ∼ 10−4. The x rays impinge onto
a water suspension of silica spheres with diameter
d ¼ 500 nm, stored in 2-mm-thick capillaries at a distance
Z0 ¼ 33 m from the undulator center. The volume con-
centration of the sample is roughly 10%, which ensures
heterodyne conditions. One additional capillary filled with
distilled water is used to characterize the noise contribution
Pðq⃗Þ. Speckles are recorded at distances z ranging from
2 cm up to 1.2 m downstream the sample. A YAG:Ce
scintillator screen with thickness 50 μm is used to convert
x-ray photons into visible light. A microscope objective
with nominal magnification 20x projects the visible light
onto the sensor (Basler acA4112–8 gm with 3.45 μm pixel
size). A 45-deg mirror is inserted between the scintillator

and the optics to prevent the transmitted x rays from
damaging the lenses and the sensor. For each z, we acquire
a stack of 50 images to increase statistics. Exposure time is
fixed at 50 ms. The acquisition frame rate is set to 1 Hz in
such a way that consecutive speckle images are statistically
independent due the random motions of the sample.
To test the sensitivity of the technique, we change the

vertical beam size at the NCD source point by varying the
vertical emittance ϵy of the electron beam. In synchrotron
light sources like ALBA, ϵy is much smaller than the
horizontal emittance ϵx and it is given by the coupled
motions between the horizontal and vertical planes [30,31].
In these cases, we can approximate the coupling factor κ of
the electron beam by κ ¼ ϵy=ϵx [30]. We can vary the
vertical emittance by using different settings of the skew
quadrupoles, which transfer the betatron motion between
the horizontal and vertical planes, thereby controlling the
coupling factor within a certain range. For these experi-
ments, the coupling factors were κ ¼ ½0.5; 0.65; 1.6; 2.8�%,
and they were inferred from the emittances measured with
the x-ray pinhole camera at FE34 (in operation since
2011 [32]).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

An example of acquisition is reported in Fig. 8(a). It
shows tiny faint speckles on top of large-scale intensity
modulations. The latter are observed also by removing the
sample and are therefore produced by some imperfections
of the beamline components. Also notice the presence of
stray-light contributions due to dust particles on the YAG

FIG. 7. HNFS experimental setup at the NCD-SWEET beam-
line at ALBA.

TABLE I. Main parameters of the HNFS setup installed at the
NCD-SWEET beamline at ALBA.

Parameter Symbol Value

Electron beam energy E 2.98 GeV
Undulator number of periods Nw 92
Undulator period length λw 21.6 mm
Radiation wavelength λ 0.1 nm
Monochromator bandwidth Δλ=λ 10−4

Undulator harmonic 7th
Flux at sample position 1.5 × 1012 ph=s

Material of scatterers SiO2

Diameter of scatterers d 500 nm
Volume concentration 10%
Distance from undulator center Z0 33 m
Sample-detector distance z 2 cm–1.2 m

Camera Basler
Camera model acA4112–8 gm
Sensor type CMOS
Bit depth 12 bit
Pixel size dpxl 3.45 μm
Exposure time ET 50 ms
Frame rate 1 Hz
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(the big circles at the center of the image) and on the camera
sensor (the small black dots throughout the image). Such
intensity modulations and disturbances are stationary,
opposite to the case of speckles. Thus the genuine speckle
pattern is extracted from the static background by means of
a differential analysis of consecutive images [double frame
analysis (DFA)] [14]:

sj;lðx⃗; zÞ ¼
ijðx⃗; zÞ − ijþlðx⃗; zÞ
ijðx⃗; zÞ þ ijþlðx⃗; zÞ

; ð19Þ

where sj;lðx⃗; zÞ is the differential speckle signal, ijðx⃗; zÞ and
ijþlðx⃗; zÞ are two different images described by Eq. (8) with
index j and jþ l, respectively, from the same acquisition
stack. In the following, we will adopt l ¼ 1. The result of
the DFA is shown in Fig. 8(b). Speckles are remarkably
uniform, as if the intensity distribution of the incoming
x rays was constant. This experimentally proves that the
DFA is effective in reducing stationary intensity modu-
lations and stray-light contributions, which ultimately do
not affect measurements. Therefore, the formalism devel-
oped in Sec. II can be applied.
For each sj;l¼1ðx⃗; zÞ we compute the corresponding

power spectrum Ij;l¼1ðq⃗; zÞ ¼ jFTfsj;l¼1ðx⃗; zÞgðq⃗Þj2 and
we average the results to increase statistics:

Iðq⃗; zÞ ¼ 1

N − 1

XN−1

j¼1

Ij;l¼1ðq⃗; zÞ: ð20Þ

Examples of power spectra acquired at the same sample-
detector distance z ¼ 1.1 m for κ ¼ 0.50% and κ ¼ 2.80%
are reported in Fig. 9.
Power spectra are rotated by roughly 5 degrees with

respect to the nominal vertical direction due to a relative
tilt between the actual beam axes and the sensor orien-
tation. Regardless of such misalignments, the actual
horizontal and vertical axes of the electron beam can be

unambiguously identified. Furthermore, since the overall
rotation of the 2D power spectra is unchanged, the coupling
scan does not appreciably change the beam tilt at the
undulator location.
A qualitative analysis of the 2D power spectra allows to

extract useful information. Power spectra are elongated
along the vertical direction, in a clear indication that the
vertical beam size is much smaller than the horizontal one.
Furthermore, the horizontal width of the power spectra is
roughly the same for all couplings, whereas the vertical
elongation of the power spectra progressively decreases.
This is particularly evident by comparing the power spectra
shown in Fig. 9. This suggests that the horizontal beam size
is unchanged during the coupling scan, whereas the vertical
beam size increases with the coupling.
Quantitatively, data analysis is based on Eq. (16) accord-

ing to the following procedure. We first extract horizontal
and vertical profiles separately and we measure the noise
baseline PðqÞ from the power spectrum of the capillary
filled with water. We then characterize the product
HðqÞSðqÞ, which we refer to as the calibration function,
by performing measurements close enough to the scattering
sample:

HðqÞSðqÞ ¼ Iðq; zÞz→0 − PðqÞ
Teffðq; zÞ

: ð21Þ

Equation (21) directly derives from Eq. (16) in the limit
z → 0, since jμðzq=kÞj2 → jμð0Þj2 thanks to the spatial
scaling and jμð0Þj ¼ 1 from the definition in Eq. (5). We
perform a piecewise analysis to avoid division by the Talbot
minima in Eq. (21) and we combine data from a few
different positions to fill in the gaps by taking advantage of
the fact that Talbot oscillations change by varying the
distance. We stress that these operations ensure that the
calibration function is measured under the actual working
conditions of the experiment.
We then use the measured PðqÞ and HðqÞSðqÞ to extract

the coherence properties of the incoming radiation from
Eq. (16):

FIG. 8. Acquired raw data (a) and corresponding differential
heterodyne speckles resulting from the DFA (b). Notice that the
speckle pattern is remarkably uniform, despite the intensity
modulations and stray-light contributions clearly visible in the
raw image. The side of each square image is roughly 260 μm in
real space. Data refer to κ ¼ 0.50% and z ¼ 1.1 m.

FIG. 9. 2D power spectra at κ ¼ 0.50% (a) and κ ¼ 2.80% (b).
Data refer to z ¼ 1.1 m.
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¼ Iðq; zÞ − PðqÞ
HðqÞSðqÞ : ð22Þ

It is here worth mentioning that the unavoidable motions
of the scatterers during the exposure time blur the speckle
patterns. This results in a further decay of the Talbot
oscillations and the power spectra are, in principle, expo-
sure dependent. However, these contributions are auto-
matically accounted for in the calibration function if all
acquisitions are performed with the same exposure time
and the statistical properties of the sample dynamics do not
vary in time. This was verified by periodically monitoring
the calibration curve during the experiment. Therefore, data
reduction based on Eqs. (21) and (22) enables effective and
rigorous compensation of the scatterer motions in real-case
scenarios, regardless of the origin of the sample dynamics
(whether diffusive or convective). Alternatively, speckles
can also be generated by static membranes [15,18].
Upon the processing procedure of Eqs. (21) and (22), we

merge data from different distances by exploiting the
spatial scaling. An example is reported in Fig. 10 for the
beam coupling κ ¼ 2.80%. Scaled Talbot maxima and
minima fit onto two unique master curves that can be
fitted according to Eq. (17) by assuming a Gaussian CCF:

uðΔxiÞ ¼ ½1þ βðΔxiÞ� · j exp½−ðΔxiÞ2=2σicoh�j2
wðΔxiÞ ¼ ½1 − βðΔxiÞ� · j exp½−ðΔxiÞ2=2σicoh�j2; ð23Þ
where either Δxi ¼ Δx and σicoh ¼ σHcoh along the horizon-
tal direction, or Δxi ¼ Δy and σicoh ¼ σVcoh along the
vertical one. The rms widths of the Gaussian CCF σHcoh
and σVcoh are known as the horizontal and vertical transverse
coherence length of the incoming synchrotron radiation,
respectively. They are the only free parameters in the entire
data reduction procedure, which makes the HNFS tech-
nique fully self-consistent for what concerns coherence
characterization of the incoming x-ray beam.
From the measured horizontal and vertical coherence

lengths σH;V
coh , a theoretical model is needed to retrieve the

corresponding electron beam size. In this framework, the
classical approach adopts the well-known Van Cittert and
Zernike theorem [22–24]:

σH;V
beam;VCZ ¼ λZ0

2πσH;V
coh

: ð24Þ

However, the Van Cittert and Zernike theorem is strictly
valid for incoherent radiation sources [22–24] and its
applicability to third-generation synchrotron light sources
is debated [33,34]. Therefore, we propose a second model
to map the 2D x-ray coherence into the corresponding
electron beam sizes. The method relies on precomputed
look-up tables (LUTs) obtained via extensive simulations
following the formulas in [33,35]. We label the corres-
ponding horizontal and vertical beam sizes as σH;V

beam;LUT.

We prefer to follow the latter formalism, as it accounts for
more realistic conditions like deviations from a perfectly
incoherent radiation source, the finite energy spread of the
particle beam (ΔE=E ¼ 1.05 × 10−3) and small detunings
in the radiation wavelength, as already shown in previous
publications [16,36]. The proposed approach has been
validated with SRW (Synchrotron Radiation Workshop)
simulations [37,38]. Its limitations and range of applicabil-
ity stem from the ultrarelativistic approximation and the
free-space propagation of the x-ray beam. The case of an
imaging configuration with lenses or focusing mirrors
(without surface errors) can also be treated by this method
upon a proper scaling of distances and by including the
correct magnification factor [16,34].
Results are reported in Fig. 11 and are summarized in

Table II. Expected values σH;V
beam;th are derived by combining

beam size measurements from the x-ray pinhole camera at
FE34 and LOCO (Linear Optics from Closed Orbit)
measurements [39–41] of the machine optical parameters
at the operational coupling κ ¼ 0.65%. The reference

(a)

(b)

FIG. 10. Master curves describing the upper and lower enve-
lopes of Talbot oscillations along the horizontal (a) and vertical
(b) direction for κ ¼ 2.80%. Different colors represent different
sample-detector distances z.
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values are obtained under the assumption that the beam
coupling at NCD-SWEET is the same as the beam coupling
at FE34, though this might not exactly be the case in a real

operational scenario [31]. In Fig. 11, the horizontal error
bars in data and the shaded area of the reference values stem
from a 15% relative uncertainty in the beam coupling
calculations at FE34. Vertical error bars stem from the
dispersion of data around the fitted curves given by
Eq. (23), as reported for example in Fig. 10.
Themeasured horizontal beam size is roughly the same for

the four different couplings and all values are compatible
with theoretical predictions within the experimental uncer-
tainties. This quantitatively proves that the coupling scan
does not appreciably influence the horizontal beam size at the
undulator location. The average value of 124 μm is in
excellent agreement with the expected value of 129 μm.
On the contrary, the vertical beam size increases with the

coupling from (4.6� 1.4) μm at κ ¼ 0.50% to (14.0� 1.2)
μm at κ ¼ 2.80%. Data are in good agreement with expect-
ations. The relatively large uncertainties at low couplings
stem from the limited range of transverse displacements Δy
probed with the current experimental setup: at the NCD-
SWEET beamline, the maximum distance is limited to
zmax ¼ 1.2 m due to mechanical restrictions. Experimental
uncertainties can be reduced, and even smaller beam size can
in principle be measured, by accessing larger distances to
better probe the large coherence areas, as described inEq. (4).
Regarding the effects of possible instabilities on beam

size measurements, we cannot exclude that mechanical
vibrations and source instabilities at frequencies higher
than the inverse of the exposure time might influence the
vertical beam size estimations and uncertainties. An opti-
mal value of the exposure time of 10 ms or less would be
required to measure the instantaneous source size without
most vibration effects. In our case, however, the exposure
time of 50 ms is limited by the signal-to-noise ratio (the
average count on the camera is 400). In this view, the
technique will definitely benefit from higher fluxes in
higher-energy machines and from state-of-the-art detectors,
besides achieving the high-accuracy and finesse typical of
statistical methods [16].

(a)

(b)

FIG. 11. Measured horizontal (a) and vertical (b) beam sizes as
a function of the beam coupling measured at FE34. Expected
values based on independent pinhole and LOCO measurements
are also reported for comparison.

TABLE II. Measured horizontal and vertical coherence lengths σH;V
coh , horizontal and vertical electron beam sizes

obtained via the Van Cittert and Zernike formalism σH;V
beam;VCZ, horizontal and vertical electron beam sizes obtained

with the LUT formalism σH;V
beam;LUT, and expected values σH;V

beam;th based on independent pinhole and LOCO
measurements.

Coupling at FE34 σHcoh [μm] σHbeam;VCZ [μm] σHbeam;LUT [μm] σHbeam;th [μm]

κ ¼ 0.50% 4.2� 0.2 125� 6 125� 6 129
κ ¼ 0.65% 4.3� 0.2 122� 6 122� 6 129
κ ¼ 1.60% 4.1� 0.2 126� 6 126� 6 129
κ ¼ 2.80% 4.3� 0.2 122� 6 122� 6 129

σVcoh [μm] σVbeam;VCZ [μm] σVbeam;LUT [μm] σVbeam;th [μm]
κ ¼ 0.50% 105� 32 5.0� 1.5 4.6� 1.4 5.5
κ ¼ 0.65% 66� 13 8.0� 1.6 7.4� 1.5 6.2
κ ¼ 1.60% 44� 6 11.9� 1.6 11.4� 1.6 9.8
κ ¼ 2.80% 36.0� 3 14.6� 1.2 14.0� 1.2 12.9
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Finally, it is worth mentioning the comparison between
the two models for the undulator source. By applying the
Van Cittert and Zernike theorem, the vertical beam sizes are
larger with respect to the full simulations. A difference in
the order of 10% arises at κ ¼ 0.50%, which progressively
reduces to roughly 4% at κ ¼ 2.80%. The two models
perfectly agree along the horizontal direction. This suggests
that the Van Cittert and Zernike theorem applies when the
undulator source size is sufficiently large (as evident along
the horizontal direction and along the vertical direction for
large coupling values), whereas deviations from the rig-
orous statistical optics approach arise for very small beam
sizes, as also reported in [16,34]. We could not evidence
these differences given the current resolution limit of the
setup and the uncertainties in the reference values, and
accuracy levels in the order of a few percents are required to
discriminate between the two models. However, this might
be of interest in future light sources for accurate measure-
ments of small beam sizes.

V. CONCLUSIONS

We have shown how to perform full 2D beam size
measurements with the HNFS technique. The method relies
on Fourier analysis of heterodyne speckles to assess the 2D
transverse coherence properties of the incoming x rays. The
electron beam sizes along the horizontal and vertical
directions are then retrieved by means of precomputed
LUTs based on rigorous statistical optics approaches.
After reviewing the underlying physical principles of the

technique, we thoroughly describe the effects of the limited
resolution of the detection system, as well as the peculiar
near-field effects generating the so-called Talbot oscilla-
tions. This allows to introduce a data reduction procedure
that is fully self-consistent.
The method has been applied at the hard x-ray undulator

beamline NCD-SWEET at the ALBA Synchrotron Light
Source. To test the sensitivity of the technique to different
beam sizes, the beam coupling in the machine has been
changed using four different settings of the skew quadru-
poles, resulting in different vertical beam sizes of a few
micrometers at the NCD-SWEET source point.
We show that the measured horizontal beam size

does not vary with the coupling. The average value of
124 μm is in excellent agreement with the expected value
of 129 μm. Opposite to this case, the vertical beam size
increases as a function of the beam coupling from roughly
5 μm at coupling κ ¼ 0.50% up to 14 μm at coupling
κ ¼ 2.80%, in good agreement with expectations.
To the authors knowledge, this experimentally proves

for the first time that the HNFS technique can resolve
beam sizes as small as 5 μm, thus drastically improving
on past measurements reported in the literature and making
the technique a suitable diagnostics for low-emittance
particle beams.
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