

ACDIV-2021-02
March 2021

 Development of a Fast Parallel Tracking Code

Based on the OpenCL Framework

 Author: Manu Canals Codina

Supervisor: Michele Carla

Abstract

In this report the implementation and the details of a high performance GPU-based code for
tracking ultrarelativistic particles in a storage ring is discussed.
The code was developed using mostly the Python programming language, only the
computationally intensive part exploits the OpenCL framework [3]. The validity of the results
has been tested against the well-established MAD-X/PTC code [2]. The code has been tested
on the optics of the current ALBA ring and on a candidate for the future ALBA-II ring.
This report shows the implementation of the developed GPU-based tracking code, including a
User Guide, as well as the results of the accuracy and benchmarking tests. A derivation of the
theoretical fundamentals is also explained, following the scheme from Bryant et al. [1]

Accelerator Division
Alba Synchrotron Light Source

c/ de la Llum, 2-26
08290 Cerdanyola del Valles, Spain

ALBA Synchrotron
Accelerators Department

INTERNSHIP REPORT

Development of a Fast Parallel Tracking Code
Based on the OpenCL Framework

Author

Manu Canals Codina

Supervisor

Michele Carla

Abstract
In this report the implementation and the details of a high performance GPU-based code

for tracking ultrarelativistic particles in a storage ring is discussed.
The code was developed using mostly the Python programming language, only the com-

putationally intensive part exploits the OpenCL framework [3]. The validity of the results
has been tested against the well established MAD-X/PTC code [2]. The code has been tested
on the optics of the current ALBA ring and on a candidate for the future ALBA-II ring.

This report shows the implementation of the developed GPU-based tracking code, includ-
ing a User Guide, as well as the results of the accuracy and benchmarking tests. A derivation
of the theoretical fundamentals is also explained, following the scheme from Bryant et al.
[1].

April 15, 2021

Contents

1 Introduction 2

2 Theory 2
2.1 Pass-method . 3

Equation of Motion . 3
Solutions . 3
Sextupoles . 5

2.2 Momentum Deviation . 6
Definition of a General K(s) : K ′(s) . 6
Solving the Equation of Motion: Extra Term 7
Differences Between MAD-X/PTC and GPU 7

2.3 Accelerator Elements . 7
Drift . 8
Quadrupole . 8
Sextupole . 9
Sector Bend . 10
Rectangular Bend . 10
MAD-X/PTC Syntax for Declaring the Ring 11

3 Implementation 11
3.1 Data Parallelism . 11
3.2 Code Architecture . 12
3.3 Practical User Guide . 13

4 Results 15
4.1 Dynamical Aperture . 15

Parametrization . 15
ALBA-I . 16
ALBA-II . 16

4.2 Benchmarks . 19
Amount of Particles . 19
Amount of Variables . 20
Precision . 21
Amount of Variables Quantities upon Compiling 22

5 Conclusions 24
Code . 24
Accuracy . 24
Speed . 24
Compiling process . 24

References 25

1 Introduction

An accelerator or a storage ring, such as the ALBA synchrotron, can be broken down to a
collection of magnets and regions of free space (drifts) where particles travel through, deflecting
and bending their paths according to the magnetic fields they find along their trajectories. In
order to attain proper functioning of such a complex structure, one needs, among other things,
to reproduce the physical phenomena occurring throughout this collection of elements. Certain
predictions and information are needed for designing and managing such a machine. As a concrete
example, dynamical aperture (DA) calculations, toward which, this work is focused.

There are already many libraries, modules and programs capable of simulating a very wide
spectra of accelerator scenarios. Such as Methodical Accelerator Design (MAD) and SixTrackLib.
Despite the ready availability of these simulation codes, there are specific applications where an
ad-hoc solution is better performing. Such is the case of this work, with the specific task in mind
of obtaining fast DA calculations.

The strategy followed in this work to gain computational speed goes down the path of ex-
ploring graphics processing units (GPUs). To speed up further the calculations, several approx-
imations were also introduced, the effect of which will be discussed. For the same purpose, 32
and 64 bit floating point representation of the data was investigated.

A complete discussion of storage ring beam dynamics can be found in [1]. Nevertheless, in
Section 2 a summary of the fundamental concepts is provided for reference.

On Section 3, the first result produced by this work is presented: the implementation of the
developed theory using a GPU. An overview on the type of programming used and the code itself
is given, as well as a short practical user guide.

Finally in Section 4, the results of the comparison between the GPU code and MAD-X/PTC
are provided together with some speed benchmarking of the GPU code.

2 Theory

A basic goal of this work is to simulate a particle’s trajectory passing through a lattice, i.e. a
sequence of elements (magnets and free space). This is actually no more than knowing how the
particle passes through each individual element, and there are only 5 different kinds of them
considered here:

• The drift (i.e. free space).

• The quadrupole, see Figure 1b.

• The sextupole, see Figure 1c.

• The sector bend (SBEND), see Figure 1a. A sector bend is a dipole with the exiting and
entering faces perpendicular to the reference orbit, explained below. There are no focusing
effects caused by the inclination of faces.

• The rectangular bend (RBEND), see Fig. 1a. A rectangular bend is a dipole with the
exiting and entering faces parallel to each other. There will be some inclination with
respect to the reference orbit, which will cause extra focusing. To account for this effect
the RBEND is decomposed in an SBEND plus two wedge magnets.

The reference orbit is defined as the orbit such that a particle with a certain nominal mo-
mentum p0 will move turn after turn on the same trajectory. It may also be called circular orbit.

2

(a) (b) (c)

Figure 1: Magnet fields lines and poles of (from left to right) a dipole, a quadrupole and a sextupole;
in the plane transverse to the reference orbit.

In this section, the method for calculating how a particle passes through each element (the
pass-method) is derived, motion with momentum deviation is considered and final results for
each element are listed. Additionally, MAD-X/PTC syntax will be addressed, for such syntax
has been adopted on the GPU’s optics specifications.

2.1 Pass-method

Consider a Cartesian coordinate system (x, s, z) attached to a particle travelling onto the refer-
ence orbit with nominal momentum p0. See Figure 2. A mutable variable representing either x
or z will be used to ease the expressions. Namely, y. It is worth mentioning that the coordinate
s is defined as

d

dt
≡ v

d

ds
, (1)

where v = p/m and p is the momentum of the particle to be studied.

Equation of Motion

In absence of non linear elements (that will be discussed later on) the motion of a particle with
momentum p0 through an accelerator element can be synthesized as (see [1])

d2y

ds2
+K(s) · y = 0. (2)

The particle is considered to remain in the transverse plane (the s = 0 plane). The position
dependent focusing parameter K(s) has been introduced. The forms it takes, depending on
the plane and element, are shown in Table 1. The s-dependency makes (2) valid for the whole
ring, with K changing from element to element. Notice that the magnet field is then solely
characterized with the normalized gradient k :

k ≡
e

p0

∂Bz

∂x

∣

∣

∣

x=0
= −

1

Bz,0r0

∂Bz

∂x

∣

∣

∣

x=0
. (3)

Solutions

Solving (2) will give the position and velocities of a particle after travelling through an specific
element. Consider a particle entering a certain element at x0, z0 (generally y0) with velocities
x′0, z

′
0 (generally y′0)1. Its position and velocities when exiting the element – their propagated

1Notice that these velocities refer to the variable s and not t, with s defined in (1): y′
≡ dy/ds

3

Figure 2: Coordinate system used to describe the motion of Particle 2 through the synchrotron. Particle
1 represents a particle travelling onto the reference orbit with nominal momentum p0.

Element Horizontal Plane Vertical Plane

Drift K → 0 K → 0
Quadrupole −k k

Pure Dipole r−2
0 K → 0

Dipole with quadrupole component r−2
0 − k k

Table 1: Forms of K depending on the type of element, where k is defined as (3).
“→” means “take the limit”. An SBEND is a single dipole (pure or with the extra
component), and an RBEND is an SBEND with two wedges added. They will be
further discussed later on.

coordinates – are

y = cos(K
1

2L) · y0 +K− 1

2 sin(K
1

2L) · y′0

y′ = −K
1

2 sin(K
1

2L) · y0 + cos(K
1

2L) · y′0

(with K depending on the plane and kind of element, as shown on Table 1), which can be
expressed in matrix form as

(

y
y′

)

=

(

cos(K
1

2L) K− 1

2 sin(K
1

2L)

−K
1

2 sin(K
1

2L) cos(K
1

2L)

)

(

y0
y′0

)

. (4)

Notice that K may take negative values, in which case hyperbolic functions would appear.
Additionally, a wedge’s solution can be obtained from the above equation. A wedge with some
aperture ǫ deflects a particle entering at y parallelly – i.e., with y′ = 0 – a certain angle α given

4

by

α ≡ y ·
tan(ǫ)

r0
,

where r0 is the bending radius of the dipole it is added to. The resulting focusing effect
produced by a wedge has a similar form to the thin lens approximation (L → 0) of a quadrupole
with focal length −r0/ tan(ǫ). In matrix form,

(

1 0

± tan(ǫ)
r0

1

)

,

where (+) is used for the horizontal plane and (−) for the vertical plane – assuming the bending
always happens on the horizontal plane – .

This propagation, matrix used to calculate the particle’s coordinates after passing through
one element is the so called pass-method. In order to consider multiple elements, the pass-methods
relative to each element are applied in sequence, propagating the particle coordinate through the
sequence of elements. This translates to a matrix multiplication when writing the pass-methods
in matrix form.

With this composition rule, expression (4) and Table 1, a particle without momentum de-
viation could be tracked through the whole storage ring, if it wasn’t for non linear elements:
sextupoles.

Sextupoles

These elements, are solved using a thin lens approximation [4]. A thick sextupole is approximated
with a certain amount of thin sextupoles interleaved with drifts. A thin sextupole can then be
solved, and results in the following map:

x = x0, px = px,0 −
1

2
k2L(x

2
0 − z20),

z = z0, pz = pz,0 + k2Lx0z0, (5)

where k2 is the normalized sextupole gradient, analogous to k, defined as2

k2 ≡ −
e

p0

∂2Bz

∂x2

∣

∣

∣

x=0
= +

1

Bz,0r0

∂2Bz

∂x2

∣

∣

∣

x=0
. (6)

Map (5) applies only the thin element kick. The full approximation works by combining
these kicks with drifts. There are several methods to do so [5]. In this work only the so called
Simple and Teapot method have been implemented to fully approximate a sextupole of length
L and strength k2 with n slices. As shown and explained in Figure 3, a thick sextupole is sliced
into thin sextupoles (represented by black lines). Coloured areas represent the drifts introduced
in between.

2Notice the sign!

5

SIMPLE TEAPOT

The thick sextupole is divided into n equal
“boxes”, each of length d = L/n. Each
box is made up of: a drift of length d/2,
followed by the sextupole kick – with the
length parameter taking the value L/n and
its strength k2 –, and a closing drift of
length d/2.

There is a drift of length δ at the begin-
ning and end of the approximated element.
Then, the n slices are all equally spaced by
drifts of lengths ∆. Each sextuple kick has
a length value of L/n and strength k2. The
values of δ and ∆ are given by

δ ≡ L/ [2(1 + n)] and ∆ ≡ L · n/
(

n2 − 1
)

.

Figure 3: Notice that kicks take the strength value of the thick element, but not its length.

The same composition rule previously introduced for linear elements can be applied to sex-
tupoles, although they can not be expressed in matrix form (thus, no matrix multiplication here).

Currently, every tool needed to track particles without momentum deviation has been pre-
sented. Expression (4) and Table 1 account for drifts, quadrupoles and dipoles (with wedges
being a particular case), while (5) and Figure 3 account for sextupoles. Also, the composition
rule of these pass-methods has been already explained so far. In the next section, momentum
deviation is introduced, along with the few changes it comes with.

2.2 Momentum Deviation

The particle to be tracked can have now a different momentum than p0: p. This is quantified
with

δ ≡ ∆p ≡
p− p0
p0

. (7)

Definition of a General K(s) : K ′(s)

The equation of motion with momentum deviation slightly differs from (2):

d2y

ds2
+K ′(s) · y =

δ

1 + δ

1

r0(s, y)
with K ′(s) ≡ K(s)/(1 + δ), (8)

where the bending r0 may depend on the element and on the plane, and K(s) is still given
by Table 1. For the sextupole case, its corresponding k2 is analogously changed, a (1 + δ) factor
must appear for similar reasons.

The right equivalence on (8) defines the general – with and without momentum deviation –
position dependent focusing parameter, K ′. This is the first difference that momentum deviation
implies.

6

Solving the Equation of Motion: Extra Term

The extra term on (8) vanishes for straight elements. Therefore, their solutions still have the
form of (4), although the above K ′ must be used. For dipoles, the new equation of motion
must be solved. Since an RBEND is composed with two wedges and an SBEND, only the latter
pass-method needs to be obtained. The SBEND pass-method results in

y
y′

δ/(1 + δ)

 =

cos(K ′ 1
2L) K ′− 1

2 · sin(K ′ 1
2L) ±r

−1

0
K

′−1

[

1− cos(K′1
2L)

]

−K ′ 1
2 · sin(K ′ 1

2L) cos(K ′ 1
2L) ±r

−1

0
K

′1
2 · sin(K′1

2L)
0 0 1

y0
y′0

δ/(1 + δ)

 ,

where r0 is the bending on the plane that y refers to, and K ′ is defined in (8). Also in this case,
negative values of K ′ requires to switch to hyperbolic functions. The upper sign (+) is used
when the bending is in the horizontal plane, and (−) when the bending is in the vertical one.
The appearing extra terms are highlighted on the pass-method above, and they make up the
second difference on momentum deviation implementation.

Differences Between MAD-X/PTC and GPU

It’s worth to note that MAD-X/PTC and the GPU code use a different momentum definition.
The variable on MAD-X/PTC referring to the transverse momentum py_MX is defined as ([2], p.
241)

py_MX ≡
py
p0

=
m

m0
·
vy
v0

with the usual vy ≡
dy

dt
,

where p0 always refers to the reference orbit without momentum deviation (travelling at v0
with relativistic mass m0). The analogous variable in GPU is the velocity that has been used
throughout this section, y′. It is defined – making use on its turn of the definition of s – as

y’_GPU ≡
dy

ds
≡

1

v

dy

dt
=

vy
v
,

where in this case, v refers to the tangential velocity with momentum deviation. Thus, when
there is no momentum deviation, the values of py_MX can be directly passed to y’_GPU, since
v = v0 and m = m0. On the other hand, when there is momentum deviation,

p = p0 · (1 + δ) =⇒ py_MX ≡
py
p0

=
py
p
(1 + δ) =

mvy
mv

(1 + δ) = y’_GPU · (1 + δ). (9)

The input values used on both sides of the simulation comparison, on MAD-X/PTC and on
GPU, don’t refer to the same quantity! This change, (9), must be introduced to correctly com-
pare both codes.

With this comparison remark, all differences that come with momentum deviation have been
accounted for, namely:

1. K ′(s) ≡ K(s)/(1 + δ).

2. Extra terms on the
bending solutions ∝ δ

1+δ
1
r0

.

3. py_MX = y’_GPU · (1 + δ).

2.3 Accelerator Elements

In this section, the pass-method for each element is shown, together with its declaration in
the optics file3. Even though MAD-X/PTC elements were more sophisticated and admitted

3There is no distinction between uppercase and lowercase letters in the declaration.

7

several parameters referring to several effects such as fringe fields, misalignments, inclination of
faces. . . only the parameters shown here are supported in the GPU code. Moreover, their units
follow the MAD-X/PTC convention shown in Table 2.

Magnitude Unit

Length, L m
Quadrupolar strength, K1 m−2

Sextupolar strength, K2 m−3

Angle, ANGLE rad

Table 2: Units of the declared magni-
tudes on the MAD-X/PTC optics file.

A couple of general comments must be me made before the element listing.

• Firstly, there are 3 variables named “K” in this work: the gradient k defined in (3), the
parameter K used in the solutions (defined in Table 1); and in this section will appear
another one, K1, the gradient defined by MAD-X/PTC, which is the parameter given in
the optics file. Since every pass-method is based on K, but the input given is K14, they
ought to be related. From K1 MAD-X/PTC’s definition:

K1 ↔ K using K1

MAD−X/PTC′s

def.
≡ −k and k

Table1
→ K.

Additionally, the sextupole’s gradient k2 defined in (6) and the MAD-X/PTC related vari-
able K2 are defined exactly the same. Thus, the input K2 can be directly passed to the
variable used on the pass-method, k2.

• Secondly, in the dipoles pass-methods the bending radius appears, while on the MAD-
X/PTC input file, only the bending angle, A, is given. Recalling that the length of a
bending element is in general defined as a curved distance following the reference orbit, a
connection can be established:

L ≡ r0 ·A =⇒ r0 =
L

A
.

Drift

MY_DRIFT: DRIFT, L = L;

The drift MY_DRIFT declared as shown, which has a length of L, has the following pass-method:

(

y
y′

)

=

(

1 L
0 1

)(

y0
y′0

)

. (10)

Quadrupole

MY_QUADRUPOLE: QUADRUPOLE, L = L, K1 = K1;

The quadrupole MY_QUADRUPOLE declared as shown, which has a length of L and a strength of
K1, has the following pass-method:

4The reader will find in the code that this naming of “K” ’s isn’t strictly followed, although each corresponding
amount is correctly used at all times.

8

K = K1/(1 + δ)
if K > 0:

(

x
x′

)

=

(

cos(|K|
1

2L) |K|−
1

2 sin(|K|
1

2L)

−|K|
1

2 sin(|K|
1

2L) cos(|K|
1

2L)

)

(

x0
x′0

)

(

z
z′

)

=

(

cosh(|K|
1

2L) |K|−
1

2 sinh(|K|
1

2L)

|K|
1

2 sinh(|K|
1

2L) cosh(|K|
1

2L)

)

(

z0
z′0

)

if K < 0:
(

x
x′

)

=

(

cosh(|K|
1

2L) |K|−
1

2 sinh(|K|
1

2L)

|K|
1

2 sinh(|K|
1

2L) cosh(|K|
1

2L)

)

(

x0
x′0

)

(

z
z′

)

=

(

cos(|K|
1

2L) |K|−
1

2 sin(|K|
1

2L)

−|K|
1

2 sin(|K|
1

2L) cos(|K|
1

2L)

)

(

z0
z′0

)

.

Sextupole

MY_SEXTUPOLE: SEXTUPOLE, L = L, K2 = K2;

The sextupole MY_SEXTUPOLE declared as shown, which has a length of L and a strength of K2,
has the following pass-method when slicing it with n kicks:

k2 = K2/(1 + δ)
if SIMPLE:

for box in n:
(

y
y′

)

=

(

1 L/2n
0 1

)(

y0
y′0

)

x′ = x′0 −
1
2 · k2 ·

L
n
· (x20 − z20)

z′ = z′0 + k2 ·
L
n
· x0z0

(

y
y′

)

=

(

1 L/2n
0 1

)(

y0
y′0

)

if TEAPOT:
(

y
y′

)

=

(

1 L/ [2(1 + n)]
0 1

)(

y0
y′0

)

for slice in (n-1):

x′ = x′0 −
1
2 · k2 ·

L
n
· (x20 − z20)

z′ = z′0 + k2 ·
L
n
· x0z0

(

y
y′

)

=

(

1 L · n/(n2 − 1)
0 1

)(

y0
y′0

)

x′ = x′0 −
1
2 · k2 ·

L
n
· (x20 − z20)

z′ = z′0 + k2 ·
L
n
· x0z0

(

y
y′

)

=

(

1 L/ [2(1 + n)]
0 1

)(

y0
y′0

)

.

Notice how drifts and sextupoles kicks are being applied following the slicing methods on
Figure 3.

9

Sector Bend

MY_SBEND: SBEND, L = L, ANGLE = A, K1 = K1;

The sector bend MY_SBEND declared as shown, which has a (curved) length of L, bends an
angle A and includes a quadrupolar component of strength K1, has the following pass-method:

HORIZONTAL PLANE

K =

[

A2

L2
+K1

]

/

(1 + δ)

if K > 0:

x
x′

δ/(1 + δ)

 =

cos(|K|
1

2L) 1

|K|
1

2

· sin(|K|
1

2L) A
L|K|

[

1− cos(|K|
1

2L)
]

−|K|
1

2 · sin(|K|
1

2L) cos(|K|
1

2L) A

L|K|
1

2

· sin(|K|
1

2L)

0 0 1

x0
x′0

δ/(1 + δ)

if K < 0:

x
x′

δ/(1 + δ)

 =

cosh(|K|
1

2L) 1

|K|
1

2

· sinh(|K|
1

2L) A
L|K|

[

cosh(|K|
1

2L)− 1
]

|K|
1

2 · sinh(|K|
1

2L) cosh(|K|
1

2L) A

L|K|
1

2

· sinh(|K|
1

2L)

0 0 1

x0
x′0

δ/(1 + δ)

VERTICAL PLANE

K = −K1/(1 + δ)
if K > 0:

(

z
z′

)

=

(

cos(|K|
1

2L) |K|−
1

2 sin(|K|
1

2L)

−|K|
1

2 sin(|K|
1

2L) cos(|K|
1

2L)

)

(

z0
z′0

)

if K < 0:
(

z
z′

)

=

(

cosh(|K|
1

2L) |K|−
1

2 sinh(|K|
1

2L)

|K|
1

2 sinh(|K|
1

2L) cosh(|K|
1

2L)

)

(

z0
z′0

)

.

Rectangular Bend

Option, RBARC=false;

MY_RBEND: RBEND, L = L, ANGLE = A, K1 = K1;

Notice the extra specification line! It should be included only once, prior to any call to an
RBEND. This extra command comes from the MAD-X/PTC syntax, and it alters the meaning
of the declared L:

RBARC=false −→ L ≡ Lcurved

RBARC=true −→ L ≡ Lstraight,

where Lstraight is the distance along a straight line through the magnet. Therefore, this extra
command must be included since the pass-method (4) uses Lcurved.

The rectangular bend MY_RBEND declared as shown, which has a (curved) length of L, bends
an angle A and includes a quadrupolar component of strength K1, has the following pass-method:

10

x′ = x′0 + x0 ·
1

1 + δ

A

L
tan

(

A

2

)

z′ = z′0 − z0 ·
1

1 + δ

A

L
tan

(

A

2

)

...

...

...

SBEND pass-method with: L, A and K1

x′ = x′0 + x0 ·
1

1 + δ

A

L
tan

(

A

2

)

z′ = z′0 − z0 ·
1

1 + δ

A

L
tan

(

A

2

)

Recall that faces are inclined with respect to the reference orbit on a RBEND. Concretely,
when an RBEND is bending an angle A, each face has a A/2 inclination. And that’s exactly
the aperture of the wedges that implement the focusing effects, which can be seen in the above
pass-method.

MAD-X/PTC Syntax for Declaring the Ring

In the optics file, after the desired elements have been declared, a line can be created gathering
all of them (each one can appear multiple times) in a specified order with the following command:

MY_LINE: LINE = (MY_RBEND, MY_Q, MY_DRIFT, MY_Q, MY_S, MY_SBEND);

A line can be made up of other lines.

MY_RING: LINE = (MY_FIRST_LINE, MY_MID_LINE, MY_LAST_LINE);

An example of a complete optics specification file is shown below:

Option, RBARC=false;

D1: DRIFT, L = 0.3;

D2: DRIFT, L = 0.3;

QF: QUADRUPOLE, L = 0.3, K1 = 1.5;

QD: QUADRUPOLE, L = 0.31, K1 = -1.1;

RBF: RBEND, L = 0.7, ANGLE = 0.1, K1 = 0.6;

RBD: RBEND, L = 0.6, ANGLE = 0.08, K1 = -0.6;

SBF: SBEND, L = 0.7, ANGLE = 0.1, K1 = 0.6;

SBD: SBEND, L = 0.7, ANGLE = 0.1, K1 = -0.6;

SF: SEXTUPOLE, L = 0.17, K2 = 38;

SD: SEXTUPOLE, L = 0.16, K2 =-62;

RING: LINE = (QF, D1, SD, D2, QD, D1, SF, D2, D1, QD, D2, SF, D1, QF, D2, SD, D1,

RBD, D2);

3 Implementation

3.1 Data Parallelism

In this particular problem, the code to be parallelized is used for tracking a certain amount of
distinct particles through the same accelerator. Let’s specify what these two words mean in this
context. Particles are distinct in the sense that, although they all share the same type (mass

11

and charge), they all can have different initial conditions: position and velocity on the horizontal
and vertical plane, together with momentum deviation. On the other hand, the accelerator each
particle gets tracked through consists of the same set of elements on every case. However, any
parameter of any individual element (such as the length of a drift, for instance) can be set to vary
from particle to particle. Let’s name this parameters variable parameters for future references.

This is to say, this script will simulate multiple particles which can start with various initial
conditions, and one can choose any parameters of the ring to change for each particle (to become
variable parameters).

Moving on, the heart of parallelisation resides in the simultaneous execution of code, a feature
that, depending on software and hardware, could be exploited to speed up computations. Gladly
enough, one sort of parallelization consists of carrying out parallelly the same task on distinct

sets of data, the so called data parallelism. One can already see how naturally this fits with the
particular software for tracking multiple particles, explained above. The simulation code is going
to be executed in parallel with different sets of data. Each set is going to comprise a particles’
initial conditions and the values of the variable parameters.

Lastly, let us call each distinct computational unit able to execute a process a core. They
can be provided by several hardware, such as GPU or multicore CPU. Nonetheless, the speed up
of parallel computing depends on the hardware, and for the concrete case of data parallelism, a
GPU’s design is highly optimized.

The connection between software and hardware is accomplished through OpenCL – this
is, choosing the GPU or CPU5, moving the program and its variables to each core, managing
memory, . . . – . Moreover, in this work, its Python’s application programming interface has been
used. Python scripts are only used for “housekeeping” tasks, while heavy duty computations are
relegated to OpenCL.

3.2 Code Architecture

The tracking code is structured into three parts: importing (reading) the optics of the accelerator
(using madx_utils.py), setting up the tracking kernel (using strackino.py) and running said
kernel. All complexity and difficulties come from the second step. More specific details on each
step will be given in the following section.

Firstly, the optics of the accelerator are read from a plain text file written in the MAD-
X/PTC-like syntax, explained in the previous section.

The second part, the set up of the tracking, can be broken down to:

• Initialization of the device. OpenCL finds all available devices, i.e. GPU, CPU. . . The
user can choose which one should be used for computation.

• Assembling the kernel. The kernel is the actual code passed to the selected hardware
(GPU, CPU, . . .), the actual instructions to be executed by each core. Since data paral-
lelism is going to be used, here’s how the tracking is approached, i.e. the contents of the
kernel.

Recall that each track is characterized by a single particle initial conditions and the value
of the variable parameters. All of this information, the “properties” of every track, is going
to be stored in an array named pool.
Initially, when the kernel starts to run, each core will look at pool and take the properties
of one track. Each different core will take a different track. With these properties, each
core will parallelly start a loop through the turns.

5Although OpenCL has been designed with GPU use in mind it can also be used on normal CPU without
requiring any change to the simulation code (in fact, it is only the OpenCL back-end that is swapped).

12

On each turn, the same one-turn pass-method (due to the lattice periodicity) is going to
be applied, propagating the particle’s coordinates element-by-element through the lattice
until the end of the turn.
After each turn, it is checked whether or not the particle is lost, and if that is the case, the
loop will be interrupted. Otherwise, it will continue.
When the specified amount of turns is reached, or if the particle was lost, final coordinates
are copied into the same variable pool6. After a core ends its turn-loop, it looks again
at pool, takes another track’s properties and repeats the one-particle tracking. When all
tracks have been used, the program execution end and the data is copied back to the host
CPU.
Conclusively, on each set up call, the kernel containing the above instructions is assembled.
The one-turn pass-method is assembled in generators.py by combining together the pass-
method of each individual element.

• Building the kernel. Once the kernel is assembled, it has to be processed and compiled
by the OpenCL hardware specific back-end: it has to be “built”. This is actually the most
time consuming step. On the other hand, luckily, it needs to be carried out only once.
Since the built kernel is cached, further execution of this step would not require additional
time.

Lastly, each track’s properties are given (filling pool) and the kernel is executed.

3.3 Practical User Guide

First of all, the (file-wise) set up to use this tracking code consists of:

• A plain text file with the optics of the accelerator, written in MAD-X/PTC-like syntax7.

• The python script called madx_utils.py, with the tools to read said plain text file.

• The python script called generators.py, containing the physics of each magnet type.

• The python script called strackino.py, where parallelization and tracking happens.

One should import madx_utils.py and strackino.py (generators.py gets internally imported).
Furthermore, NumPy is also required.

After the initial imports, the first thing to do is reading the optics of the accelerator with:

lattice = madx_utils.Lattice(path, ’RING’)

where path is the location of the file containing the optics, and ’RING’ is the name of the desired
line to be used for tracking (its name must appear in the optics file). The returned object, here
called lattice, is a custom class instance which only has two attributes: elements, a dictionary
with magnets’ names, the name of its parameters and their corresponding values; and line, the
lattice, an ordered list of labels referring to the magnets from the previous dictionary.

Once the accelerator optics are read, the tracking must be set up with the following call:

t = strackino.Track(’Device Name’, parameters, lattice, num_of_tracks, turns)

where:

6Tracks which have already been used and those who still haven’t are properly distinguished.
7It refers to the concrete syntax explained in Section 2, not the complete MAD-X/PTC format. Some element’s

parameters are not supported here but they are in MAD-X/PTC.

13

• ’Device Name’ is the hardware to be used, for our purposes, the GPU. Its name depends
on the computer configuration. Running it once with whatever name, a list of the available
devices will be printed out, in case you don’t know which one to use.

• parameters is a list of tuples specifying the element’s parameters that could be changed
from track to track. For example, if you only want the length (called L on the optics file)
of the drift myDrift (custom name on the optics file) to possible vary depending on the
track, then:

parameters = list([(’myDrift’, ’L’)]).

This variable can be an empty list, in which case, no parameters will be allowed to vary
from track to track.

• lattice is the returned object explained above.

• num_of_tracks is the amount of tracks to be done, i.e. number of particles to be tracked,
each tracking characterized by some initial conditions and some values of the variable
parameters.

• turns is the number of turns.

This call returns a custom class instance, here called t, which only has a few features of
interest to the reader right now. An attribute called pool, containing the initial conditions and
variable parameters of each track. It works as a dictionary, whose labels can be looked up in
another attribute, pool_t8. Lastly, its method run execute the computations.

Before running the tracking, the initial condition of each particle must be initialized. This
needs to be repeated for each coordinate and parameters. In the case of the x variable:

t.pool[’x’] = numpy.array(custom_horizontal_positions).

Finally, the tracking is executed by calling the method run:

res = t.run(thread_count).

The input thread_count is a suggestion to OpenCL about the amount of cores to use. Its value
for best performance depends on the specific device, and it should be tuned by hand. Empirically
was found that setting it to a few times the amount of available cores gives the best performances
(this condition in fact ensure to keep saturated the hardware). The output res is the result of the
tracking. It has the structure of pool, but its type is instead pyopencl.array.Array. Results
can be copied back with

res_np = res.get().

This variable contains the final values of each particle’s position and velocity (as well as the
values of the variable parameters used).

In the code, a lost particle is defined as having an absolute position greater than 0.1 (meters),
or a position which is inf or NaN9. This gets checked after every turn, and the maximum position
allowed can be manually changed inside strackino.py, in init_kernel’s statement

if (!(fabs(x) < 0.1) || !(fabs(y) < 0.1)) .

8In case it helps, here “t” stands for “type”.
9This is equivalent to check if the particle’s position is not lower than 0.1 meters.

14

Moreover, the dp value is set to 1000 for lost particles, in order to recognize them in the output
res.

Summing up, one could track 2000 particles in the accelerator ’RING’ for 4000 turns, with
no variable parameters and various initial conditions, using a GPU with 1000 threads, writing
the following lines:

imports...

lattice = madx_utils.Lattice(’../example.txt’, ’RING’)

t = strackino.Track(’Intel(R) Iris(TM) Graphics 6100’,

set(), lattice, 2000, 4000)

t.pool[’dp’].fill(my_dp)

t.pool[’x’] = numpy.array(custom_horizontal_positions)

t.pool[’dx’] = numpy.array(custom_horizontal_velocities)

t.pool[’y’] = numpy.array(custom_vetical_positions)

t.pool[’dy’] = numpy.array(custom_vertical_velocities)

res = t.run(1000)

4 Results

In this section, the accuracy (with MAD-X/PTC as reference) is checked – through dynamical
aperture calculations –, and the performance of the implementation is measured, benchmarking
multiple cases on different devices.

4.1 Dynamical Aperture

The dynamical aperture (DA) calculation is carried out, both in MAD-X/PTC and in GPU, by
tracking a number of particles with different starting positions (all with null initial transverse
momentum) and checking whether or not they get lost after 1000 turns. These particles may
have a certain momentum deviation as well. The region of initial positions where particles aren’t
lost makes up the DA, which is then compared across the different simulations.

Parametrization

In this calculation, the set of initial positions sits on a n × n10 grid of amplitude a centred at
the origin of coordinates (positions range from −a up to a). The amplitude is adjusted to fit the
dynamical aperture, which depends on the simulated optics (here, either ALBA-I or ALBA-II).
In order to attain a considerable density of the grid, n = 61 has been chosen.

The tracking goal is to simulate for 1000 turns on the real lattice, but since the ring defined
in the lattice file is made of only one of the four identical quadrants that make up ALBA„ 4000
turns are needed there.

MAD-X/PTC tracking is governed by several parameters. First of all, model and method are
set at 2 (Matrix-Kick-Matrix) and (integration order) 6, respectively. Secondly, increasing the
number of integration steps, nst, improves MAD-X/PTC’s results in exchange of computational
speed. It is kept at 10. Lastly, the use of the exact relativistic Hamiltonian is controlled with
exact (the exact form is used when exact = true). Since exact = false doesn’t fully consider
relativistic effects, it produces a simulation of lower quality.

Similarly, GPU also depends on some parameters. In this case, GPU is less flexible and only
two of them affect the results (the other ones are performance related). Namely, stl and nst,
the style and number of slices on the slicing of sextupoles. They are kept at TEAPOT and 5,

10Thus, this is the amount of particles on the grid.

15

respectively.

For both rings, ALBA-I and ALBA-II, the DA has been computed for several momentum
deviation values:

dp = +0.05,+0.03,+0.01, 0.00,−0.01,−0.03,−0.05.

The use of the exact Hamiltonian on MAD-X/PTC (i.e. the exact parameter) has been
studied on every case.

On each figure that will be presented, the initial position of the particles, x and y respec-
tively11, are plotted, i.e. the initial grid. For each particle, it is indicated whether or not it was
lost during the simulations. Markers follow the legend

,

where Lost stands for particles predicted lost on both simulations, similarly for kept ones denoted
by Kept, both favourable results for the comparison. Last two markers imply that the other
simulation predicted a lost particle there, hence an unmatching result. Accordingly, the difference
between simulations is quantified and shown in the plots, named diff.. It is calculated counting
the unmatching results and dividing them by the amount of kept particles on MAD-X/PTC.

ALBA-I

Results are given on Figure 4, where the amplitude of the grid has been set to a = 0.03 m.
Preventing the use of the exact Hamiltonian on MAD-X/PTC with exact = false always

resolves in GPU results matching better. The value of diff. can be seen to always decrease
from true to false. This is, GPU results approach the MAD-X/PTC exact = false situation,
and not the exact = true one. This is to be expected, since the tracking on the GPU code
doesn’t consider all relativistic effects, which is precisely what exact = false does.

When comparing the GPU results with the exact=true MAD-X/PTC situation, it is found
that results are still acceptable for some cases, but diverge for high momentum deviations values.

ALBA-II

Results are given on Figure 5, where the amplitude of the grid has been set to a = 0.01 m, a
third of the ALBA-I case, to match the smaller DA.

In this case, avoiding the use of the exact Hamiltonian also improves the amount of matches
between GPU and MAD-X/PTC. Despite that, GPU results are still comparable to those from
MAD-X/PTC’s exact = true case for all momentum deviation values.

Summing up, the differences between GPU and MAD-X/PTC’s exact = true simulation can
be mainly attributed to relativistic effects, since MAD-X/PTC’s exact = false yields results in
great agreement with GPU. These relativistic discrepancies are only significant on the ALBA-I
case (and high momentum deviation values). On the ALBA-II ring, where the DA is smaller,
relativistic effects aren’t that significant.

11Notice that here y stands for vertical position.

16

Figure 4: Left : exact = true. Right : exact = false.

Figure 5: Left : exact = true. Right : exact = false.

4.2 Benchmarks

The performance of the tracking may depend on several factors, naming three of them: number
of parameters of the simulation, hardware used and current state of the computer (applications
running, memory available, power of the laptop. . .). The first two factors can be more or less
controlled and maintained stable for different tests, but that’s not the case for the last one, the
state of the computer upon testing a tracking.

Due to that factor, run-times of the same test can change from hour to hour, or from day to
day. Thus, a considerable error on the run-times is to be expected. Consequently, when testing
a certain parameter and its influence on the performance, only major run-time differences that
overcome those computer-state errors will be significant and reliable.

There are various parameters on the simulation that can be controlled: amount of turns, t,
square grid size for computing the DA (with amplitude a), momentum deviation, dp, amount of
slices on the sextupoles, nst, data representation accuracy, bits, amount of variable parameters,
var, and of course, amount of particles on the grid, n×n. DA tests are done with ALBA-I optics
only.

Only bits, var and n are going to be studied. The rest of the parameters will be fixed with
the values of a usual case. That is,

t = 4000 a = 0.04 m dp = 0 nst = 5.

Hardware-wise, the devices available for testing are those from two computers – my personal
laptop, here referred to as Mine, and a PC at ALBA that is been remotely used –, each having
a GPU and a CPU device. For reference:

Mine, CPU : Intel(R) Core(TM) i5-5250U CPU @ 1.60GHz
Mine, GPU : Intel(R) Iris(TM) Graphics 6100
ALBA, CPU : pthread-Intel(R) Core(TM) i5-8400 CPU @ 2.80GHz
ALBA, GPU : Quadro P600.

When considering different tests, results are going to be computed either for some or for all of
the devices. Particularly, in some situations the laptop Mine takes about 40 minutes to compile
a single test, making the test practical only on the ALBA’s computer.

Recall as well that run-times for this tracking are fundamentally different from the first call
to the second one (and any further call). On the first call, the code is both build (compiled)
and executed. On further calls, no compilation is needed, speeding up the tracking process.
Therefore, the difference between run-times could be considered as the compiling time, with the
time of the second call being that of the execution.

Amount of Particles

Maintaining the values of bits and var at their defaults (32 and 0 respectively), the amount of
tracked particles has been varied. Results are shown on Figure 6, where only the computer at
ALBA has been used.

Looking at the execution times (run-times of the second calls), GPU is considerably faster
than the CPU. Furthermore, the execution times grow steeper on the CPU than in the GPU.
From n × n = 25 to n × n = 3025, CPU execution time increases by a factor of ∼ 16, while
GPU’s only by ∼ 2.5.

Considering now the compiling time (the difference between first and second call), GPU has
a really hard time building the program. CPU takes about 1 s to compile, while GPU takes up
to 16 s. This compiling time stays approximately constant with respect to n.

19

!

"

#

$

%

&!

&"

&#

&$

&%

"!

! '!! &!!! &'!! "!!! "'!! (!!! ('!! #!!!

)
*
+
,-
./
0
12
34

+151+

67819.:3-1;<==

6781>0?@+A1;<==

;7819.:3-1;<==

;781>0?@+A1;<==

Figure 6: Run-times for first and second call of the tracking as a function of the total amount of particles
n × n. The computer at ALBA has been used for this plot. The difference between calls can be clearly
seen, as well as the difference between GPU and CPU behaviours.

Consequently, when taking into account the full run-time (the whole first call run-time) GPU
has been measured slower than the CPU. In spite of that, due to the fast increase on the CPU’s
execution time, the GPU can be expected to perform better for larger number of particles. It
has to be kept in mind that the GPU’s second call run-time performs remarkably better than
the CPU.

Remember, the actual values of the run-times could vary according to that computer-state
factor, as it has been empirically seen. This is, the actual values can vary from day to day:
the CPU’s n = 61 case lasted more than double the time shown on the figure the day before
the figure data was gathered. Other examples of run-time values drastically changing could be
presented too. Nonetheless, the time consumption distribution on CPU and GPU, as well as
the steepness of the run-times, are facts independent from the state of the computer. They are
always observed on all tested devices.

Giving values from the devices on the laptop Mine, the values’ hard dependence on the specific
hardware is evidently illustrated. See Table 3. As it was already pointed out, the computer-state
factor can be seen here, noting that values of the table don’t match those of the previous figure,
which were registered on different days.

Amount of Variables

Fixing n = 61 and still keeping the precision at bits = 32, the amount of variable parameters is
now studied. Results using the ALBA computer are shown on Figure 7.

Data on Figure 7 doesn’t have a clear tendency, it could be considered constant at most.
Moreover, even going to the extreme case were all available parameters were considered as vari-
able, no significant change in behaviour is observed. As always, the computer-state factor plays a
significant role on every benchmarking, but in this case the feature explained in section Amount
of Variables Quantities upon Compiling mainly contributes to the results shown here.

20

n = 5 GPU CPU

ALBa’s PC (37) 1.1 (2.4) 0.35
Mine (43) 2.3 (6.3) 0.04

n = 61

ALBa’s PC (39) 2.6 (34) 31.7
Mine (594) 2.5 (10.6) 5.1

Table 3: Run-times of the (first) second call of the simulations for different devices and n = 5, 61
(bits and var have been kept at 32 and 0, respectively). Values given in seconds. Notice the huge time
consumption on Mine for n = 61.

!

"

#!

#"

$!

$"

%!

%"

&!

&"

"!

! $ & ' (#! #$ #&

)
*
+
,-
./

0
12
34

567

89:1;.73-1<6==

89:1>0?@+A1<6==

<9:1;.73-1<6==

<9:1>0?@+A1<6==

Figure 7: Run-times for first and second call of the tracking as a function of the amount of variable
parameters, using the computer at ALBA. The two diagonal lines stand for an axis break. Then, the
value var = 12 actually refers to the value 86 (the case where all possible variables on the ALBA-I
ring are being used).

Anyhow, the differences between GPU and CPU (compiling and execution time distribution)
can be still clearly spotted, in the previous figure as well as in Table 4.

Precision

Lastly, considering the two possible situations concerning precision, bits = 32, 64, the results
are the following for the devices on the computer at ALBA. Amount of particles and variables
has been kept now at 61 and 0, respectively. Giving both first and second call run-times:

bits = 32
GPU: run-time = (39) 2.6
CPU: run-time = (34) 32.

bits = 64
GPU: run-time = (63) 4.4
CPU: run-time = (33) 31.

Therefore, a difference can be seen on the GPU results while CPU remains almost constant, but
it can not be assured that it is the effect of the precision. Again, the state of the computer has

21

var = 0 GPU CPU

ALBa’s PC (39) 2.6 (34) 31.7
Mine (594) 2.5 (10.6) 5.1

var = 6

ALBa’s PC (45) 3.3 (35) 33
Mine (2445) 3.1 (12.1) 5.0

var = 86

ALBa’s PC (47) 2 (31) 27
Mine (3134) 5.1 (15) 4.6

Table 4: Run-times of the (first) second call of the simulations for different devices and var = 0, 6, 86
(bits and n have been kept at 32 and 61, respectively). Values given in seconds.

too much effect, varying the values of a single test from call to call. In order to trust and rely
on these values, the computer-state factor should be properly isolated. Nonetheless, no drastic
change on the values is observed, therefore, no concerns about the use of 64 bits should arose.

Amount of Variables Quantities upon Compiling

A special focus is made on the amount of variable quantities that the compiler considers. On the
compiling process, a distinction is made between quantities that will remain constant throughout
the different tracks and quantities that will vary from track to track. An example of a constant
quantity could be the factor ANGLE/L of some bend whose parameters are the same for each
particle (they are not set as variable parameters). An example of a variable quantity could be
the square root

√

K1

1 + dp
,

since even if K1 is constant, dp is a quantity that could vary from track to track, making the
whole square root a variable quantity.

When there are a lot of variable quantities in the kernel the compiler has a hard time managing
the code. It has to keep track of every quantity that can change depending on the tracked particle.
Constant quantities just get evaluated once while the code is compiled. Therefore, a low number
of variable quantities is desired for a fast compiling process.

Consider now a ring with all parameters (L’s, ANGLE’s, K1’s and K2’s) fixed – there are no
parameters set as variable parameters. This should give the lowest number of variable quanti-
ties. Then, consider the strengths of the magnets used on the implementation (see section 2.3
and the expressions below), remembering that momentum deviation implied a (1 + dp) factor
everywhere.

K = K1 / (1 + dp) k2= K2 / (1 + dp)

K =

[

A2

L2
+ K1

]

/

(1 + dp) K = -K1 / (1 + dp)

Since, dp is a variable quantity, all K’s will be considered as a variable quantity, regardless of
the fact that strengths K1 and K2 are set as fixed parameters! This has a huge impact on
the compiling process. It implies that the code will have a lot of variable quantities which could
otherwise remain constant quantities if it wasn’t for the dp. Remarkably, trigonometric functions
such as

cos

(√

K1

1 + dp
· L

)

,

22

will be considered as variable quantities. Trigonometric functions are specially interesting to
keep as constant quantities since they are expensive to evaluate, and keeping them as variable
ones really slows down the compilation and execution process.

Furthermore, in the DA calculations, the same dp value is passed to each particle. This
means that the actual value of the trigonometric functions doesn’t change from track to track.
In spite of this, the compiler still considers these “constant” trigonometric quantities as variable
ones, since at the moment of compiling, no values have been passed to dp yet.

Summing up, just the implementation of momentum deviation alone implies that all strengths
will be variable quantities, which will slow down the compiling process, even if the actual value
of dp is the same for all particles.

In order to test this effect of the dp, the DA on the ALBA-I ring has been once more simulated,
with a = 0.01, n = 11 and bits = 32. Three different situations have been considered:

1. With dp implementation and var = 0. In this case, the considered variable quantities
are: the usual variables x, dx, y, dy, dp, and the strengths K (and all the subsequent
quantities that this implies, such as trigonometric functions). Only ANGLE’s and L’s remain
as constant quantities.

2. Without dp implementation and var = 0. Here, only the usual variables x, dx, y,

dy, dp are variable quantities. K’s, ANGLE’s and L’s are truly constant quantities. Thus,
all trigonometric functions and factors on the expressions will be considered as constant
values. This has the lowest amount possible of variable quantities.

3. Without dp implementation and var = full. This means that all parameters are set as
variable (in the ALBA-I ring there are 86 of them). This is the extreme case where besides
simple numbers on the expressions, everything else will be a variable amount, including
ANGLE’s and L’s. There are more variable quantities here than in case 1.

It has been tested on both computers, and results obtained are shown on Table 5.

1 GPU CPU

ALBa’s PC (16.11) 0.78 (3.8) 2.87
Mine (1067) 2.97 (7.62) 0.91

2

ALBa’s PC (6.21) 0.56 (2.21) 1.46
Mine (132) 2.42 (6.8) 0.83

3

ALBa’s PC (19.08) 0.75 (3.35) 2.43
Mine (3013) 3.5 (4.43) 0.81

Table 5: Run-times of the (first) second call of the simulations for different devices and the situations
explained above. Values given in seconds.

Notice how compiling run-times generally drop in situation 2, where there are the fewest
variable quantities. The effect can be best seen on GPU devices. Remarkably, run-times of the
laptop Mine drop to an astonishing 132 s on situation 2, while peaking up to a 3031 s run-time
on situation 3. And they are simulating the same ring!

23

5 Conclusions

As a general conclusive remark: a simple, yet fast, tracking code has been successfully built
using a GPU as back-end device. Such implementation accomplishes both speed (in comparison
with a CPU) and accuracy, with respect to the tracking with approximated Hamiltonian MAD-
X/PTC’s PTC tracking. Remarkably, in many situations, results are comparable to the full
Hamiltonian ones (still provided by MAD-X/PTC’s PTC). This conclusion is expanded on the
following points, including some suggestions for improvements on future versions.

Code

The simplicity of the code comes from two sources: the reduced amount of magnetic effects
considered and the initial supposition of avoiding some relativistic effects. Regarding the first
source, the most complex effect considered here is the inclination of the faces, and it has only
been considered on one element (the RBEND). Said effect, as well as many others such as fringe
fields, misalignments or higher order components, could be considered on each element in future
upgraded versions of the code. The second source, the approximation of some relativistic effects,
greatly simplified the calculations, uncoupling the equations of motion and allowing for a thick
treatment of the elements. A future version of the code could also include the relativistic tracking
option.

Accuracy

The results this tracking provides are in agreement with the analogous ones computed by MAD-
X/PTC, although some differences show up. Generally, the relativistic discrepancies appear
most significantly for high values of momentum deviation (|dp| & 0.03). More concretely, these
relativistic effects depend on the amplitude of the trajectories: higher amplitudes show greater
mismatches. That’s the reason why the ALBA-II case doesn’t present meaningful relativistic
deviations, since its DA is ∼ 1 cm while ALBA-I’s is 4 times bigger (∼ 4 cm).

Speed

In spite of the fluctuations on the measures of the run-times, a couple of reliable conclusions can
be made. On the one hand, GPU devices take longer to compile the program that is passed to
them, CPU outperforms them every time. On the other hand, the execution time of a GPU, the
actual time where calculations are made, largely overcomes those of a CPU device. Again, this
should also be expected since the parallelisation method fits remarkably well with the functioning
of a GPU. A short last comment could be also added: a good benchmarking method should be
developed on future versions, since the current one allowed for few to none conclusions on the
use of variables, precision and amount of particles.

Compiling process

Taking care of the variable quantities on the compiling process can lead to a reduction on the
run-times, as has been seen on Table 5. The effect shown there sacrifices the implementation
of momentum deviation to gain compiling speed. Nonetheless, since on all DA calculations
the dp value is kept constant for all particles, one could figure out a way to maintain said
implementation while avoiding to consider dp as a variable, and therefore as a variable quantity,
potentially reducing compiling run-times.

24

References

[1] P. J. Bryant and K. Johnsen, The Principles of Circular Accelerators and Storage Rings,
1 st ed. Cambridge, GB: CUP, 1993, ch. 2-3 and app. A.

[2] L. Deniau, H. Grote, G. Roy and F. Schmidt. (2020, Sep.). The MAD-X Program. CERN.
Geneva, CH. [Online]. Available: http://mad.web.cern.ch/mad/webguide/manual.html

[3] The OpenCL Specification, 1.2 ver., Khronos Group, Beaverton, OR, 2021, pp. 244-318

[4] A. Wolski. Nonlinear Single-Particle Dynamics in High Energy Accelerators. Part 4: Canon-

ical Perturbation Theory [Online]. Available: https://www.cockcroft.ac.uk/archives/

course/non-linear-dynamics. pp. 23-25

[5] H. Burkhardt, R. De Maria, M. Giovannozzi, and T. Risselada. Improved TEAPOT method
and tracking with thick quadrupoles for the LHC and its upgrade. In Pro- ceedings of the

2013 IPAC Conference, number MOPWO027 in International Particle Accelerator Con-
ference, 2013. http://accelconf.web.cern.ch/AccelConf/IPAC2013/papers/mopwo027.
pdf.

25

