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Abstract

Based on the recent work of R. Lindberg on transverse

collective instabilities [1] it was observed that if the ratio

of quadrupolar to dipolar impedance ρ is equal to −1 there

is no TMC-instability. This relationship is actually fulfilled

by resistive wall (RW)-impedance on the horizontal plane in

case of a flat vacuum chamber. HEADTAIL [2]-simulations

were carried out to check if this observation can be con-

firmed. Additionally the effect of radial modes on the TMC-

instability was studied.

INTRODUCTION

The motion of particles in a single bunch can be de-

scribed by the Vlasov equation as it was found by [3]. The

linearisation of the Vlasov equation was solved by several

authors [4–7]. In particular under the effect of dipolar

impedance the transverse motion of particles of a bunch was

described by [13] by decomposition into azimuthal and ra-

dial modes. In the meantime it was found that quadrupo-

lar impedance is significant in many synchrotrons and has

a sensible effect on the transverse motion [8–10]. Shortly

after the discovery of its importance its effect was just super-

imposed on the dipolar mode detuning. However, R. Lind-

berg showed [1] that its effect has to be fully included into

the dynamics of the bunch motion. Therefore the main pur-

pose of this work is to demonstrate the difference between

the Lindberg’s description and the more naive descriptions

in the past [11]. Whereas on the vertical plane the naive su-

perposition of the dipolar and quadrupolar detuning corre-

sponds quite well to Lindberg’s result this is no longer true

for the horizontal plane: a naive superposition of the mode

detuning caused by dipolar and quadrupolar impedance in-

deed leads to a zero slope of mode 0 as expected, but mode

0 would still couple with mode -1, but in Lindberg’s descrip-

tion the coupling is not compulsory. In order to support this

observation HEADTAIL simulations were applied.

SUMMARY OF LINDBERG’S MODE

EVOLUTION THEORY

In [1] the Vlasov equation is linearized with the Planck-

Fokker terms included but truncated to a matrix equation.

In the following it is assumed that the TMCI is strong

enough for the disregard of the Planck-Fokker terms. This

leads to the following equation:

∆ωmam
p +
∑

n,q

(D + Q)m,n
p,q an

q = 0

with ∆ωm
= ∆Ω + mωs (with ωs as synchrotron ang.

frequency), with dipolar and quadrupolar matrix elements
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following abreviation:
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with Ln
p (x) as general Laguerre-polynomials.1 This formal-

ism can be applied to any type of transverse impedance.

In the first part we will focus on RW-impedance as it ful-

fills the requirement ρ = −1 in case of horizontal RW-

impedance of a horizontally flat parallel-plate beam pipe

geometry which is at least approximately very common in

many synchrotrons. The parameters used in the simulations

can be looked up in table 1.

Table 1: simulation parameters used

parameter value unit

E/e 3 GV

ωs 59.39 kHz

στ 0.0154 ns

κRW⊥ 4-11 kV
pC

f bbr 1.5, 3, 5 GHz

Qbbr 2.3

β⊥ · Rbbr
⊥ 52.9, 100, 41.1, 17.3 MΩ

RW-impedance

In order to study the evolution of the headtail-modes, the

linearized and truncated Vlasov-equation is solved for a 2-

mode system of two modes m=-1 and m=0 with radial mode

number r = 0 (Higher radial modes are only discussed in

the conclusions.). This was already done in the past by

MOSES [13] for a pure dipolar impedance. In order to

include the quadrupolar impedance the detuning slope re-

lated to it was added to the dipolar mode detuning computed



Figure 1: Imposing quadrupolar tune shift on the horizontal

mode detuning from dipolar RW-impedance: For ρ = −1

mode 0 detuning is ∆Ω ≈ 0, whereas the TMCI threshold

is maintained.

by MOSES (this procedure is called adapted MOSES). All

modes were correspondingly shifted, but the onset of the

TMC-instability did not change (Fig. 1). So in case of hori-

zontal impedance generated in a flat parallel-plate like beam

pipe geometry the dipolar detuning of mode m = 0 was

compensated by the quadrupolar detuning resulting in zero

detuning of the mode. It seemed that mode m=0 still hit

an instability if it met the mode m=-1, now with a strong

positive slope. This was supported by measurements at the

ESRF [11]. It had also the advantage that the measured

threshold current allowed an estimation of the effective hor-

izontal impedance even in the case of the zero slope. The

mode evolution can be found from Vlasov’s equation by the

solution of the secular equation here demonstrated for the

2-mode system:
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where A ≡ AH = −AQ =
I

2(E/e)
β⊥κ⊥ and α =

Γ(3/4)

Γ(1/4)
√

2

the coupling parameter and β̃ = 1/4. κ⊥ is the horizon-

tal dipolar respectively quadrupolar RW-impedance’s kick

factor of the beam pipe. To account for the quadrupolar

detuning, the term AQ was introduced which is the same

as the dipolar detuning AH apart from the sign. Including

AQ does not change the threshold which can be found by

solving the secular equation and searching for the detuning

∆Ω where it becomes complex. But this description was

obviously not complete as HEADTAIL-simulations cannot

reproduce this behaviour (Fig. 1). If, however, for the con-

sideration of the quadrupolar impedance Lindberg’s formal-

ism is used the secular equation for the 2-mode system looks

1 Actually we stick to the mode expansion of [12].

differently:
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As one of the off-diagonal terms cancels out the coupling

disappears. Both modes still approach and meet, but do not

couple, they just pass through each other (Fig. 2). This is

qualitatively an important change. A couple of questions

pop up: Will there be no TMCI-threshold anymore on the

horizontal plane ? How will it be possible to estimate the ef-

fective horizontal impedance from single-bunch detuning?

Some answers can be found in the next section.

Figure 2: Applying Lindberg’s full theory on horizontal

RW-impedance leads to very good agreement with HEAD-

TAIL. The growth rate (green) is not excited at the meeting

point of the modes.

BBR-impedance

In case of Broad Band Resonator (BBR) impedance

(with (R⊥,Q,ωr ) and Q′
=

√

Q2 − 0.25) the quadrupo-

lar impedance is also of importance when the cross section

changing beam pipes generating it are not circular. It will be

shown that the modes principally behave the same as they

do in case of horizontal RW-impedance if the rule ρ = −1

is imposed. So initially the spectral distribution of dipo-

lar and quadrupolar impedance are assumed to be the same

in order to demonstrate that qualitatively there is no differ-

ence to RW-impedance (Fig. 3). The secular equation for

this case turns out to be very similar:
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Figure 3: Modes under the effect on the common dipolar

and quadrupolarBBR-impedance essentially show the same

behaviour as in the RW-impedance case [14].

Before we discuss more involved cases for completeness

the vertical mode detuning will be touched upon. As for ver-

tical impedance ρ ∼ 0.5, we are far away from the intrigu-

ing case ρ = −1. So in Lindberg’s theory the 2 azimuthal

modes m=-1 and m=0 couple (Fig. 4) as they do in adapted

MOSES including the naively superimposed quadrupolar

impedance. However, the threshold current can be different.

But the difference between adapted MOSES (with naive su-

perimposed quadrupolar detuning) and Lindberg’s theory

is rather small and above all does not go necessarily in the

desired direction. So at this level of study Lindberg’s the-

ory does not give an explanation for the notorious failure of

matching the measured vertical impedance in single bunch

with the computed one found in electron synchrotrons [15].

The picture becomes a bit more complicated for higher fre-

quency and with the consideration of radial modes, but this

is out of scope of this work.

Figure 4: A low-frequency BBR-impedance HEADTAIL

simulation agrees well with 2-mode case of Lindberg’s the-

ory (red), even better than with the adapted MOSES(cyan).

For higher frequency the radial modes have to be considered

which change the picture slightly.

Finally we assume that the spectral distribution of the

dipolar impedance is different from the quadrupolar one

since it is much more realistic but with still agreeing the kick

factors. This is actually easy to achieve as BBR-impedance

is described by 3 parameters to play with. So instead of

requiring ρ =
ZQ (ω)

ZD (ω)
= −1 we only require

ρ =
Z
e f f

Q
(ω)

Z
e f f

D
(ω)
= −1 (5)

We keep on studying the horizontal plane. In this case (at

least) 2 BBR-models (here indexed with H for horizontal

and Q for quadrupolar) are needed, one for the dipolar part

and another one for the quadrupolar part. Including both

in the formalism the secular equation for the eigenvalues

amounts to (B :≡ BH = −BQ):
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BH + BQ B(αH + αQ )
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2
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= 0

(6)

It yields essentially two different cases, one where αQ −
αH < 0 and the other one where αQ − αH > 0. In the

Figure 5: If the same effective dipolar and quadrupolar

BBR-impedance of opposite sign but with different reso-

nance frequencies are assumed modes can still couple as in

this example (αH > αQ) confirmed by HEADTAIL modes

(white) and their growth rate (green).

Figure 6: Essentially the same case as in the precedent

figure, but different coupling coefficients of dipolar and

quadrupolar BBR-impedance. Mode coupling no longer oc-

curs as confirmed by the low growth rate (green).

first case αQ < αH , there is coupling (Fig. 5), whereas in



the second case αH < αQ (Fig. 6), there is no coupling

anymore. One of most important consequences is that it is

indeed possible that mode 0 and -1 meet without coupling.

This seems also to be possible in more complex impedance

models.

CONCLUSIONS

Now impedance budgeting on the horizontal plane is

rather different from the vertical plane. It cannot be relied

upon the horizontal threshold anymore for the measurement

of the effective impedance. There might be even no horizon-

tal threshold at all.

Even the threshold on the vertical plane changes with re-

spect to the results of MOSES. However, the change is much

smaller than on the horizontal plane.

In this report only examples with low BB-resonance fre-

quency are studied. At higher frequency there might be de-

viations between Lindberg’s mode theory and HEADTAIL.

In the future the 2-mode example will be extended to

larger number of modes including also radial modes. It was

already observed that higher radial modes of m=-1 do not

couple with m=0 in the pure case ρ = −1.
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