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Abstract 
 
We report the study of three di_erent betatron tune correction methods at the ALBA storage 
ring through simulations in the Matlab Accelerator Toolbox (AT). The methods use either 
two, eleven or fourteen independent qudrupole families to correct the betatron tune. In the 
latter case, a minimization constraint in the beam's beta beating is implemented. Further, 
insertion devices (IDs) are simulated to study realistic sources of errors in the storage ring. 
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We report the study of three different betatron tune correction methods at the ALBA storage
ring through simulations in the Matlab Accelerator Toolbox (AT). The methods use either two,
eleven or fourteen independent qudrupole families to correct the betatron tune. In the latter case,
a minimization constraint in the beam’s beta beating is implemented. Further, insertion devices
(IDs) are simulated to study realistic sources of errors in the storage ring.

I. INTRODUCTION

In particle accelerators the working point influences
strongly the performance of the machine. This point is
specified by setting both components of the betatron tune
number, Qx andQy. In order to have a good performance
of the accelerator the working point should remain con-
stant while the machine is operating. Therefore, it is im-
portant to set the tune to the value in which the working
point is achieved and keep it unchanged.

However, real accelerators have several sources of er-
rors that tend to displace the machine from its working
point. We can distinguish between two main types of er-
ror sources: the ones that modify the nominal behaviour
of the machine slowly, as the rising of the temperature
in the quadrupoles or other components of the ring; and
the ones that introduce perceptible errors in a short pe-
riod of time, as the insertion devices when its gap is open
or closed. It is then clear that this errors must be cor-
rected systematically if a good performance of the ma-
chine is desired. A common way to correct these errors
is using the quadrupoles spread along the storage ring.
By changing its strength one can modify the beam pa-
rameters to reset the working point. Quadrupoles of the
same type −same quadrupole strenght and lenght− form
families of quadrupoles. At ALBA each family contains
eight quadrupoles and there are fourteen families, ten
with horizontal focusing (QH) and four with vertical fo-
cusing (QV). A certain configuration of these quadrupole
families allows building the machine’s lattice with a cer-
tain symmetry.

In this work we present a series of simulations that
implement various correction schemes in the ALBA stor-
age ring. At the moment, only six IDs are located at
ALBA but in the future it is expected to host more ex-
periments, which means more IDs for the beamlines and
a consequent increase of the modification of the beam.
Therefore, a feedback system will be needed to correct
systematically this errors and ensure the stability of the
accelerator. The goal of this simulations is to study these
correction methods to later implement them as online
feedback system at the ALBA synchrotron.

II. BEST PAIR OF QUADRUPOLE FAMILIES

The first thing we did is to study which are the pair of
quadrupole families that best correct the tune variations
from the nominal values. We started making the assump-
tion that the pair of quadrupole families that best correct
the tune are such that the area covered by the vectors in
the shifted-tune space is maximum. Here, shifthed-tune
space is the set of points (∆Qx,∆Qy) and the vectors are
the quantities that expand from the origin to a certain
point in the space.
To produce these tune shifts we have slightly varied the

quadrupole strength, k, of the quadrupoles in the sim-
ulated ring of the AT. This has been done by changing
each time the quadrupole strength of just one quadrupole
family in order to have a total change of ∆k = 0.01 m−2.
This means that each quadrupole of the family has been
varied a quantity ∆k = 0.01/8 m−2, since there are
eight quadrupoles per family. To add this ∆k, we have
changed both the second component of PolynomB and
the quadrupole strength itself, k, in the AT code.
To preserve the symmetry of the lattice in each

quadrant and, particularly, in the unit cell, we have
taken into account that families QV03-QV04, QH07-
QH10 and QH08-QH09 have to be changed simultane-
ouly and therefore the quadrupole strength change is
∆k = 0.01/16 m−2.
The result of this simulation is shown on the top

of Fig. 1. The plot present ∆Qx and ∆Qy produced
by the modification of the quadrupole strength of each
quadrupole family. In order to find out the best family
pair using our assuption we have computed the area cov-
ered by each pair of shifted-tune vectors. The result is
shown on the bottom of Fig. 1, showing up, according to
this assumption, that the quadrupole families that best
correct the tune variations are the QH03 family and the
QH07-QH10 families.

III. TUNE SHIFT CORRECTION

The next step was to use the previous calculation to
correct the tune shifts produced by random errors in the
quadrupoles. To do so, we have considered that the effect
of a quadrupole familiy is independent of each other and



BETATRON TUNE CORRECTION Ignacio López de Arbina
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FIGURE 1: (Above) Shifted-tune space of the shifted-tune vectors produced by the excitation of each quadrupole family
independently. (Below) Shifted-tune with the two shifted-tune vectors that cover the maximum area.

that the tune shift is linear with the quadrupole strength
needed to correct the tune, that is

∆Q = M∆k, (1)

where ∆k is the quadrupole excitation that we introduce,
∆Q is the tune variation induced by the quadrupole ex-
citation and M is the response matrix to be determined.
Assuming that the quadrupole families are independent
of each other we can write

∆Q(1) = M

(

∆k
0

)

, (2)

∆Q(2) = M

(

0
∆k

)

, (3)

where the superindices refer to the quadrupole families.
In our particular case these are QH03 and QH07+QH10

families. The solution to these equations is

M =
1

∆k

(

∆Q
(1)
x ∆Q

(2)
x

∆Q
(1)
y ∆Q

(2)
y

)

≃

(

0.1778 0.5055
−0.1922 −0.1868

)

.

(4)
With this response matrix, M, now we can compute

which is the ∆kcor we shall apply to the quadrupoles
in order to correct the variation of the tune from the
nominal values. Hence, the correction problem is left to
the equation

∆kcor = −M−1∆Qmeas. (5)

To study this correction, denoted by 2Q, we have per-
formed a series of simulations introducing random er-
rors normal distributed –with σ = 3× 10−3 m−2– in the
quadrupoles. The results of these simulations are shown
in Fig. 2: the histograms on the top show the plot of the
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FIGURE 2: The graphs show the histograms of the standard deviation of the beta beating (%), the tune variation and the
quadrupole strength needed to correct the tune for each component. In the first four histograms, the blue colour refers to ring
with the errors and the red colour to the corrected ring.

beta beat’s standard deviation measured at the BPMs for
both components and for each ring –with errors (blue)
and corrected (red); the histograms in the center refer to
the tune shift produced by both the ring with errors and
the corrected ring. It is remarkable that all tune vari-

ations of the corrected ring lie on the same central bin.
This means that our correction works rather good and
that indeed it corrects the tune change induced by the
errors in the quadrupoles; in the bottom there are the
histograms of the qudrupole strength needed to correct
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FIGURE 3: The plots show the standard deviation of the beta beat and the correction quadrupole strength for 20 simulations
combining in pairs the different quadrupole families. In the left-hand side the plots correspond to the combination of the QH03
family with the rest and the right-hand side the QH07+QH10 with the rest of families.

the tune, which have been computed using Eq. (5).

IV. COMPARISON WITH OTHER

QUADRUPOLES

In order to check the validity of our hypothesis we
have performed the same previous simulations combin-
ing the QH03 and QH07+QH10 families, independently,
with each of the rest qudrupole families. The results of
these simulations are shown in different plots in Fig. 3.
The left-hand side shows the standard deviations of the
beta beating for both planes and the standard deviation
of the correction quadrupole strenght when the QH03
family is combined with each of the other families. On
the right-hand side the same plots are shown but for sim-
ulation combining QH07+QH10 families with the others.

It is possible to see how the smallest beta beat cor-
responds to the combination of the quadrupole families
that we have chosen to be the ones that best correct the
tune, i.e. QH03 and QH07+QH10. It is worth to notice
that the QH06 family also produces a small beta beat.
This can be easily explained going back to Fig. 1, where
the shifted-tune vector of the QH06 family is quite close
to the QH07+QH10, so that the area covered by QH06
and QH03 is just a bit smaller than the one formed by
QH03 and QH07+QH10. Besides, the bottom plot shows
the quadrupole strenght, ∆k, we should apply in order to
correct the tunes. Here we can also see that the smallest
∆k appears whenever the QH03 family is combined with
the QH07+QH10 families. But also the QH06 family
requires a small ∆k to correct the tune, suggesting that
this family also could be a good choice for the correction.

The same results are extracted from the analysis of the

4
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FIGURE 4: Distribution of the beta beat’s standard deviation and tune shift for simulations using all quadrupole families as
correctors respecting the lattice unit cell symmetry.
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FIGURE 5: Standard deviation of the quadrupole strength
correction needed to correct the tune with all the families
respecting the lattice unit cell symmetry.

simulations combining this time the QH07+QH10 fami-
lies with the others. Here we see that the smaller beta
beat and correction ∆k are produced by the combination
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FIGURE 6: Standard deviation of the quadrupole strength
correction needed to correct the tune with all the families
without respecting the lattice unit cell symmetry.

of our selected best families. Further, the combination of
QH07+QH10 and QH05 or QV01 also produce relatively
good corrections. As in the previous case we can see in
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Fig. 1 the the shifted-tune vectors of these families gen-
erate the largest areas.
In this same fashion we can see that the opposite hap-

pens whenever shifthed-tune vectors of relatively same
angle and size, i.e. they form rather small areas, are
combined. In these situation we see divergences in the
beta beats and in the correction quadrupole strength, for
example in the combination of the QH03 and QH05 or
QV01, as well as combining QH07+QH10 with QH06 or
QH02.

V. ALL QUADRUPOLES CORRECTION

Two quadrupole families are enough to correct the
tune. However, correction with all quadrupole families
could be more interesting in certain cases. The process
to obtain the correction is similar to the previous one, the
only difference is that now the response matrix is com-
puted for the response of each quadrupole family, and it
adopts the form

M =
1

∆k

(

∆Q
(1)
x · · · ∆Q

(11)
x

∆Q
(1)
y · · · ∆Q

(11)
y

)

. (6)

The matrix has dimension 2 × 11 because we are still
preserving the symmetry of the lattice unit cell, where
the families QV03-QV04, QH07-QH10 and QH08-QH09
are to be changed simultaneously. We will denote this
method by 11Q.
This case is a bit different from the previous one. Equa-

tion (6) leads to a overdetermined system of linear equa-
tions since we have two constraints and eleven free pa-
rameters. Actually, M is no longer a square matrix and
usual matrix inversion methods cannot be applied. To
invert, or pseudo-invert, the matrix we used the singular

value decomposition method (SVD), commonly used for
this purpose. The method states that a m×n matrix M

can be decomposed as

M = USV⊺, (7)

where U is m × m unitary matrix, S a m × n non-
degenarate diagonal matrix andV a n×n unitary matrix.
It can be proved that the pseudo-inverse of M is

M−1 = VS−1U⊺, (8)

where S−1 is the pseudo-inverse of S, i.e. S−1
ii = 1/Sii.

The results of the simulations with this method are
shown in Fig. 4, where the standard deviation of the beta
beating and the tune shift after the correction are plot-
ted. Comparing the first row of Fig. 2 and Fig. 4 we
see that the beta beating produced in the correction is
quite similar in both methods as well as the tune cor-
rection shown in the second row. Figure 5 shows the
standard deviation of the correction quadrupole strength.
As expected, the correction is distributed along all the
quadrupole families showing peaks of maximum values

for the QH01, QH03, QH06 and QH07-QH10 families.
The fact of having peaks of quadrupole strength for these
families is not surprising. If we return to examine Fig.
1, we can see that although the quadrupole families that
form the biggest area in the shifted-tune space are the
QH03 and the QH07-QH10, there are other quadrupole
families that are also good candidates to fulfil this re-
quirement, for example QH01 and QH06.
Next subsection studies the effects of this correction

when the insertion devices are added to the lattice.

A. Errors produced by insertion devices

Insertion devices (IDs) introduce variations in the
nominal beam parameters such shifts in the tune as well
as in other optical properties of the beam, as the beta
functions. In this part we have performed the simulations
introducing IDs in the ring lattice using kickmaps. Then
we calculated the tune shift independently produced by
each ID and the beta beating at each BPM. Finally, we
used our correction model to try to restore the ring pa-
rameters to its nominal values.
We found that such scheme corrects the tunes within

10−4 in the worst cases, e.g. EPU125V and SCW31, and
10−6 for the best ones, e.g. IVU21 and EPU62/71. The
results of the simulations are shown in Table I. There we
can see that the introduction of IDs produces, in most
cases, a beta beat even when the tunes are corrected.
Moreover, when we apply the correction the beta beat
increases substantially.

VI. CORRECTION WITH BETA BEATING

MINIMIZATION

Although the previous tune correction methods have
been proved to work correctly, there are other parame-
ters that are not taken into account in the process, as
for example the optics of the beam. We have already
remarked that the beta beating of the beam increases
largely when introducing the IDs (Table I), and even
further, the correction applied by the previous methods
worsen it considerably. It is, therefore, interesting to im-
plement a correction method such that it does not worsen
the beta beating.
From Eq. (5) it is clear that M is a linear application

that maps the correction vector space, K, to the tune
space, Q, that is

M : K → Q

∆k 7→ ∆Q = M∆k.

By assuming M to be a linear map we know that there
exist a set of ∆kker ∈ K such that M∆kker = 0. This set
{∆kker} is called the kernel or null space of M, ker(M).
The important thing of this is that there exist a set of cor-
rection quadrupole strengths {∆kker} that when added

6



BETATRON TUNE CORRECTION Ignacio López de Arbina
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FIGURE 7: Distribution of the beta beat’s standard deviation and tune shift for simulations using all quadrupole families as
correctors.

to our correction ∆kcor the tune remains invariant, i.e.

M(∆kcor +∆kker) = M∆kcor +M∆kker = M∆kcor.
(9)

This allows us to move on a perpendicular plane in the
tune space where the tune remains invariant but the beta
beating changes. The goal of this method is to move in
this plane until arrive to a ∆kker where the beta beating
is minimum.
To compute ∆kker we followed the prescription of the

response matrix. In this case, unlike the previous one, we
measure the beta beating produced by a ∆k = 0.01 m−1

in the quadrupoles and not the tune shift. Therefore, the
response matrix is

Mβ =
1

∆k

(

∆β(1)

β
· · ·

∆β(12)

β

)

, (10)

where β is a vector containing the horizontal component

of the beta function and consecutively the vertical com-
ponent. Further, dim(Mβ) = 240 × 12 where 240 is two
times the number of BPMs and 12 is the column dimen-
sion of the kernel of M, i.e. dim[ker(M)] = 14 × 12.
Finally, the quadrupole strength in the kernel of M is
computed as

∆kker = − ker(M) M−1
β ∆β/βmeas, (11)

where

∆β/βmeas =
βcor − βID

βID

, (12)

with βID being the beta beating measured after the intro-
duction of the insertion device and βcor the beta beating
measured after the correction ∆kcor is performed.
In this process we neglected the lattice symmetry, do-

ing the correction with all the fourteen quadrupole fam-
ilies without taking into account that families QV03-
QV04, QH07-QH10 and QH08-QH09 should be changed
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in the same amount to preserve the lattice unit cell sym-
metry.
The result of the simulations is are shown in Fig. 7

where we can see that there is no great difference if com-
pared with the previous methods. Actually, Fig. 6 shows
a similar behaviour as Fig. 5. We can see another time
that the maximum values of the correction quadrupole
strengths are distributed to the families QH01, QH03,
QH06, QH07 and QH10 (this time QH07 and QH10 act
independently).
The previous method, 11Q, produced a great incre-

ment in the beta beating when the IDs where added to
the storage ring. The same simulation has been per-
formed with this method, 14 independent quadrupole
families + beta beating minimization. As has been al-
ready mentioned, this method computes a correction,
∆kmin = ∆kcor + kker, that minimize the beta beating
introduced by the correction itself, leaving the tune in-

ID ∆QID ∆Q11Q
cor ∆β/βID ∆β/β11Q

cor

(10−2) (10−5) (%) (%)

SCW31 0.00/0.53 −26.72/−0.72 0.00/2.12 4.41/2.06

IVU20 0.00/0.18 −2.24/0.01 0.01/0.56 1.46/0.57

IVU21 0.00/0.08 −0.15/−0.02 0.00/0.28 0.63/0.28

IVU21 0.00/0.08 −0.15/−0.04 0.00/0.29 0.63/0.29

EPU125H 0.31/0.07 −9.17/−0.04 1.38/0.25 2.88/0.26

EPU125C −0.60/0.63 5.69/−0.29 2.79/2.33 2.68/2.29

EPU125V −1.48/1.15 36.75/−2.97 7.13/4.35 5.78/4.15

EPU125apC
a
−0.58/0.62 5.09/− 0.26 2.69/2.30 2.64/2.26

EPU125apV −1.48/1.15 36.75/−2.97 7.13/4.35 5.78/4.15

EPU125Hc
b 0.06/0.23 −7.27/0.08 0.29/0.86 2.39/0.87

EPU125Cc −0.02/0.24 −4.21/0.05 0.08/0.90 1.92/0.90

EPU125Vc −0.09/0.27 −2.44/0.04 0.40/0.99 1.67/0.99

EPU125apCc −0.01/0.25 −4.44/0.06 0.07/0.91 1.96/0.91

EPU125apVc −0.09/0.27 −2.44/0.04 0.40/0.99 1.67/0.99

MPW80 0.00/0.11 −0.65/−0.08 0.01/0.59 0.92/0.59

EPU62H 0.02/0.06 −0.22/−0.02 0.08/0.26 0.63/0.26

EPU62C −0.06/0.09 0.37/−0.02 0.29/0.37 0.42/0.38

EPU62V −0.10/0.10 0.62/−0.02 0.48/0.44 0.46/0.44

EPU62paC 0.00/0.08 −0.27/−0.02 0.01/0.35 0.71/0.36

EPU62paV −0.10/0.10 0.62/−0.02 0.48/0.44 0.46/0.44

EPU71H 0.02/0.06 −0.32/−0.02 0.11/0.28 0.69/0.29

EPU71C −0.08/0.11 0.51/−0.02 0.41/0.48 0.49/0.48

EPU71V −0.14/0.14 0.93/−0.03 0.69/0.60 0.63/0.61

EPU71paC 0.00/0.10 −0.49/−0.02 0.00/0.45 0.85/0.45

EPU71paV −0.14/0.14 0.93/−0.03 0.69/0.60 0.63/0.61

aap stands for anti-parallel
bc stands for correction

TABLE I: Tune shift and standard deviation of the beta beat
at each BPM in a storage ring with an insertion device. The
quantities are computed before applying the correction and
after performing the correction (cor). The tune shifts have
been compared with those in [3] showing a perfect agreement.

variant. Table II shows the result of the simulations using

this method. We can see that ∆Q14Q
min −third column of

Table II− is of the same order, and in some cases even
lower, of the 11Q correction −third column of Table I.

Finally, we compare the last two columns of each Ta-
ble, which present the beta beatings. First, we remember
that column ∆β/βID of Table I shows the beta beat-
ing produced by the introduction of IDs. Then, column
∆β/β11Q

cor of Table I and column ∆β/β14Q
cor of Table II

show the beta beating obtained once the correction is
performed without minimization. Here we can see that,
in most cases, the beta beating increases in comparison
with ∆β/βID, which is the expected behaviour when no
constraint on the beta beating is imposed. On the other

hand, coulmn β/β14Q
min shows the beta beating generated

by the 14Q coreection with the constraint of minimizing
the introduced beta beating. If we compare this column

ID ∆Q14Q
cor ∆Q14Q

min ∆β/β14Q
cor ∆β/β14Q

min

(10−5) (10−5) (%) (%)

SCW31 −6.12/− 1.19 −3.02/1.15 1.66/2.07 0.04/2.09

IVU20 −0.56/− 0.03 −1.26/0.16 0.56/0.57 0.01/0.56

IVU21 −0.06/− 0.01 −0.55/0.05 0.24/0.28 0.00/0.28

IVU21 −0.06/− 0.02 −0.56/0.05 0.24/0.29 0.00/0.29

EPU125H −1.54/− 0.06 −2.81/0.03 1.59/0.25 1.40/0.25

EPU125C 5.52/− 0.88 3.19/1.96 2.42/2.29 2.74/2.31

EPU125V 35.34/− 4.57 21.87/7.88 5.77/4.15 6.81/4.28

EPU125apC
a 5.07/− 0.84 2.90/1.90 2.34/2.26 2.65/2.27

EPU125apV 35.34/− 4.57 21.87/7.88 5.77/4.15 6.81/4.28

EPU125Hc
b

−1.73/− 0.06 −2.22/0.27 0.94/0.86 0.29/0.86

EPU125Cc −1.00/− 0.06 −1.59/0.30 0.73/0.90 0.08/0.90

EPU125Vc −0.40/− 0.08 −1.07/0.36 0.71/0.99 0.40/0.98

EPU125apCc −1.05/− 0.07 −1.63/0.31 0.75/0.91 0.07/0.91

EPU125apVc −0.40/− 0.08 −1.07/0.36 0.71/0.99 0.40/0.98

MPW80 −0.18/− 0.06 −0.81/0.09 0.36/0.59 0.01/0.58

EPU62H −0.13/− 0.01 −0.61/0.03 0.25/0.26 0.08/0.26

EPU62C 0.33/0.00 −0.07/0.07 0.28/0.38 0.29/0.37

EPU62V 0.62/0.01 0.24/0.09 0.43/0.44 0.48/0.44

EPU62paC −0.09/− 0.01 −0.63/0.05 0.27/0.35 0.01/0.35

EPU62paV 0.62/0.01 0.24/0.09 0.43/0.44 0.48/0.44

EPU71H −0.17/− 0.01 −0.68/0.04 0.28/0.29 0.11/0.28

EPU71C 0.48/0.00 0.01/0.10 0.38/0.48 0.40/0.48

EPU71V 0.96/0.00 0.43/0.15 0.61/0.61 0.69/0.60

EPU71paC −0.14/− 0.01 −0.75/0.08 0.32/0.45 0.00/0.45

EPU71paV 0.96/0.00 0.43/0.15 0.61/0.61 0.69/0.60

aap stands for anti-parallel
bc stands for correction

TABLE II: Tune shift and standard deviation of the beta beat
at each BPM in a storage ring with an insertion device. The
quantities shown are the corresponding to a correction with-
out beta beating minimization (cor) and with beta beating
minimization (min).
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with ∆β/βID column we see that its values are almost
the same in most of the cases. Actually, the biggest
differenece appears in the horizontal component of the
EPU125V and EPU125apV which is of about 4.5 %. This
results show that the 14Q correction with a minimum in-
troduction of beta beating works since it does not worsen
the beta beating and also corrects the tune.

VII. CONCLUSIONS

At the light of these simulation result we can infer
various things. First, that the assumption we did to

chose the most effective pair of quadrupole families to
correct the tune actually works. We show this studying
Figs. 3 (last row) 5 and 6 which presented peaks in the
quadrupole strengths in those quadrupole families that
form the biggests areas the shifted-tune space, see Fig.
1. Second, that the three different proposed correction
methods, i.e. 2Q, 11Q and 14Q, also work since they
correct the tune when different type of errors are intro-
duced in the storage ring. Particularly, we saw through
the 14Q method that a correction can be performed with-
out worsen the beta beating if a contraint of minimizing
the change of the beta function introduced.
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