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We report the study of three different betatron tune correction methods at the ALBA storage
ring through simulations in the Matlab Accelerator Toolbox (AT). The methods use either two,
eleven or fourteen independent qudrupole families to correct the betatron tune. In the latter case,
a minimization constraint in the beam’s beta beating is implemented. Further, insertion devices
(IDs) are simulated to study realistic sources of errors in the storage ring.

I. INTRODUCTION

In particle accelerators the working point influences
strongly the performance of the machine. This point is
specified by setting both components of the betatron tune
number, @, and @,. In order to have a good performance
of the accelerator the working point should remain con-
stant while the machine is operating. Therefore, it is im-
portant to set the tune to the value in which the working
point is achieved and keep it unchanged.

However, real accelerators have several sources of er-
rors that tend to displace the machine from its working
point. We can distinguish between two main types of er-
ror sources: the ones that modify the nominal behaviour
of the machine slowly, as the rising of the temperature
in the quadrupoles or other components of the ring; and
the ones that introduce perceptible errors in a short pe-
riod of time, as the insertion devices when its gap is open
or closed. It is then clear that this errors must be cor-
rected systematically if a good performance of the ma-
chine is desired. A common way to correct these errors
is using the quadrupoles spread along the storage ring.
By changing its strength one can modify the beam pa-
rameters to reset the working point. Quadrupoles of the
same type —same quadrupole strenght and lenght— form
families of quadrupoles. At ALBA each family contains
eight quadrupoles and there are fourteen families, ten
with horizontal focusing (QH) and four with vertical fo-
cusing (QV). A certain configuration of these quadrupole
families allows building the machine’s lattice with a cer-
tain symmetry.

In this work we present a series of simulations that
implement various correction schemes in the ALBA stor-
age ring. At the moment, only six IDs are located at
ALBA but in the future it is expected to host more ex-
periments, which means more IDs for the beamlines and
a consequent increase of the modification of the beam.
Therefore, a feedback system will be needed to correct
systematically this errors and ensure the stability of the
accelerator. The goal of this simulations is to study these
correction methods to later implement them as online
feedback system at the ALBA synchrotron.

II. BEST PAIR OF QUADRUPOLE FAMILIES

The first thing we did is to study which are the pair of
quadrupole families that best correct the tune variations
from the nominal values. We started making the assump-
tion that the pair of quadrupole families that best correct
the tune are such that the area covered by the vectors in
the shifted-tune space is maximum. Here, shifthed-tune
space is the set of points (AQ,, AQ,) and the vectors are
the quantities that expand from the origin to a certain
point in the space.

To produce these tune shifts we have slightly varied the
quadrupole strength, k, of the quadrupoles in the sim-
ulated ring of the AT. This has been done by changing
each time the quadrupole strength of just one quadrupole
family in order to have a total change of Ak = 0.01 m~2.
This means that each quadrupole of the family has been
varied a quantity Ak = 0.01/8 m~2, since there are
eight quadrupoles per family. To add this Ak, we have
changed both the second component of PolynomB and
the quadrupole strength itself, k, in the AT code.

To preserve the symmetry of the lattice in each
quadrant and, particularly, in the unit cell, we have
taken into account that families QV03-QV04, QHO7-
QH10 and QHO08-QHO9 have to be changed simultane-
ouly and therefore the quadrupole strength change is
Ak =0.01/16 m~2.

The result of this simulation is shown on the top
of Fig. 1. The plot present AQ, and AQ, produced
by the modification of the quadrupole strength of each
quadrupole family. In order to find out the best family
pair using our assuption we have computed the area cov-
ered by each pair of shifted-tune vectors. The result is
shown on the bottom of Fig. 1, showing up, according to
this assumption, that the quadrupole families that best
correct the tune variations are the QHO03 family and the
QHO7-QH10 families.

III. TUNE SHIFT CORRECTION

The next step was to use the previous calculation to
correct the tune shifts produced by random errors in the
quadrupoles. To do so, we have considered that the effect
of a quadrupole familiy is independent of each other and
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FIGURE 1: (Above) Shifted-tune space of the shifted-tune vectors produced by the excitation of each quadrupole family
independently. (Below) Shifted-tune with the two shifted-tune vectors that cover the maximum area.

that the tune shift is linear with the quadrupole strength
needed to correct the tune, that is

AQ = MAK, (1)
where Ak is the quadrupole excitation that we introduce,
AQ is the tune variation induced by the quadrupole ex-
citation and M is the response matrix to be determined.

Assuming that the quadrupole families are independent
of each other we can write

0

where the superindices refer to the quadrupole families.
In our particular case these are QH03 and QHO7+QH10

(2)
3)

families. The solution to these equations is

Mo L AQYM AP\ ( 0.1778  0.5055 )
Ak AQz(/l) AQ;Z) — \—0.1922 —0.1868 ) -
(4)
With this response matrix, M, now we can compute
which is the Akg,. we shall apply to the quadrupoles
in order to correct the variation of the tune from the

nominal values. Hence, the correction problem is left to
the equation

Akcor = _M_lAQmeas‘w (5)

To study this correction, denoted by 2Q, we have per-
formed a series of simulations introducing random er-
rors normal distributed ~with ¢ = 3 x 1073 m~2- in the
quadrupoles. The results of these simulations are shown

in Fig. 2: the histograms on the top show the plot of the
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FIGURE 2: The graphs show the histograms of the standard deviation of the beta beating (%), the tune variation and the
quadrupole strength needed to correct the tune for each component. In the first four histograms, the blue colour refers to ring

with the errors and the red colour to the corrected ring.

beta beat’s standard deviation measured at the BPMs for
both components and for each ring —with errors (blue)
and corrected (red); the histograms in the center refer to
the tune shift produced by both the ring with errors and
the corrected ring. It is remarkable that all tune vari-

ations of the corrected ring lie on the same central bin.
This means that our correction works rather good and
that indeed it corrects the tune change induced by the
errors in the quadrupoles; in the bottom there are the
histograms of the qudrupole strength needed to correct
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FIGURE 3: The plots show the standard deviation of the beta beat and the correction quadrupole strength for 20 simulations
combining in pairs the different quadrupole families. In the left-hand side the plots correspond to the combination of the QHO03
family with the rest and the right-hand side the QHO7+QH10 with the rest of families.

the tune, which have been computed using Eq. (5).

IV. COMPARISON WITH OTHER
QUADRUPOLES

In order to check the validity of our hypothesis we
have performed the same previous simulations combin-
ing the QHO3 and QHO7+QH10 families, independently,
with each of the rest qudrupole families. The results of
these simulations are shown in different plots in Fig. 3.
The left-hand side shows the standard deviations of the
beta beating for both planes and the standard deviation
of the correction quadrupole strenght when the QHO3
family is combined with each of the other families. On
the right-hand side the same plots are shown but for sim-
ulation combining QHO7+QH10 families with the others.

It is possible to see how the smallest beta beat cor-
responds to the combination of the quadrupole families
that we have chosen to be the ones that best correct the
tune, i.e. QHO3 and QHO7+QH10. It is worth to notice
that the QHO6 family also produces a small beta beat.
This can be easily explained going back to Fig. 1, where
the shifted-tune vector of the QHO6 family is quite close
to the QHO7+QH10, so that the area covered by QHO6
and QHO3 is just a bit smaller than the one formed by
QHO03 and QHO74+QH10. Besides, the bottom plot shows
the quadrupole strenght, Ak, we should apply in order to
correct the tunes. Here we can also see that the smallest
AE appears whenever the QH03 family is combined with
the QHO7T4+QH10 families. But also the QHO06 family
requires a small Ak to correct the tune, suggesting that
this family also could be a good choice for the correction.

The same results are extracted from the analysis of the
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FIGURE 4: Distribution of the beta beat’s standard deviation and tune shift for simulations using all quadrupole families as

correctors respecting the lattice unit cell symmetry.
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of our selected best families. Further, the combination of
QHO7+QH10 and QHO05 or QVO01 also produce relatively
good corrections. As in the previous case we can see in
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Fig. 1 the the shifted-tune vectors of these families gen-
erate the largest areas.

In this same fashion we can see that the opposite hap-
pens whenever shifthed-tune vectors of relatively same
angle and size, i.e. they form rather small areas, are
combined. In these situation we see divergences in the
beta beats and in the correction quadrupole strength, for
example in the combination of the QH03 and QHO5 or
QVO01, as well as combining QHO7+QH10 with QHO06 or
QHO2.

V. ALL QUADRUPOLES CORRECTION

Two quadrupole families are enough to correct the
tune. However, correction with all quadrupole families
could be more interesting in certain cases. The process
to obtain the correction is similar to the previous one, the
only difference is that now the response matrix is com-
puted for the response of each quadrupole family, and it
adopts the form

S AR\AQY Ay )

The matrix has dimension 2 x 11 because we are still
preserving the symmetry of the lattice unit cell, where
the families QV03-QV04, QHO7-QH10 and QHO08-QH09
are to be changed simultaneously. We will denote this
method by 11Q.

This case is a bit different from the previous one. Equa-
tion (6) leads to a overdetermined system of linear equa-
tions since we have two constraints and eleven free pa-
rameters. Actually, M is no longer a square matrix and
usual matrix inversion methods cannot be applied. To
invert, or pseudo-invert, the matrix we used the singular
value decomposition method (SVD), commonly used for
this purpose. The method states that a m x n matrix M
can be decomposed as

M = USVT, (7)

where U is m X m unitary matrix, S a m X n non-
degenarate diagonal matrix and V a nxn unitary matrix.
It can be proved that the pseudo-inverse of M is

M~ =VS'UT, (8)

where S™! is the pseudo-inverse of S, i.e. Si_i1 =1/S;.
The results of the simulations with this method are
shown in Fig. 4, where the standard deviation of the beta
beating and the tune shift after the correction are plot-
ted. Comparing the first row of Fig. 2 and Fig. 4 we
see that the beta beating produced in the correction is
quite similar in both methods as well as the tune cor-
rection shown in the second row. Figure 5 shows the
standard deviation of the correction quadrupole strength.
As expected, the correction is distributed along all the
quadrupole families showing peaks of maximum values

for the QHO1, QHO03, QHO06 and QHO07-QH10 families.
The fact of having peaks of quadrupole strength for these
families is not surprising. If we return to examine Fig.
1, we can see that although the quadrupole families that
form the biggest area in the shifted-tune space are the
QHO3 and the QHO07-QH10, there are other quadrupole
families that are also good candidates to fulfil this re-
quirement, for example QHO1 and QHO06.

Next subsection studies the effects of this correction
when the insertion devices are added to the lattice.

A. Errors produced by insertion devices

Insertion devices (IDs) introduce variations in the
nominal beam parameters such shifts in the tune as well
as in other optical properties of the beam, as the beta
functions. In this part we have performed the simulations
introducing IDs in the ring lattice using kickmaps. Then
we calculated the tune shift independently produced by
each ID and the beta beating at each BPM. Finally, we
used our correction model to try to restore the ring pa-
rameters to its nominal values.

We found that such scheme corrects the tunes within
10~* in the worst cases, e.g. EPU125y and SCW31, and
107C for the best ones, e.g. IVU21 and EPU62/71. The
results of the simulations are shown in Table I. There we
can see that the introduction of IDs produces, in most
cases, a beta beat even when the tunes are corrected.
Moreover, when we apply the correction the beta beat
increases substantially.

VI. CORRECTION WITH BETA BEATING
MINIMIZATION

Although the previous tune correction methods have
been proved to work correctly, there are other parame-
ters that are not taken into account in the process, as
for example the optics of the beam. We have already
remarked that the beta beating of the beam increases
largely when introducing the IDs (Table I), and even
further, the correction applied by the previous methods
worsen it considerably. It is, therefore, interesting to im-
plement a correction method such that it does not worsen
the beta beating.

From Eq. (5) it is clear that M is a linear application
that maps the correction vector space, K, to the tune
space, Q, that is

M: K—Q
Ak — AQ = MAKk.

By assuming M to be a linear map we know that there
exist a set of Akyer € K such that MAKy., = 0. This set
{AKye, } is called the kernel or null space of M, ker(M).
The important thing of this is that there exist a set of cor-
rection quadrupole strengths {Akye, } that when added
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FIGURE 7: Distribution of the beta beat’s standard deviation and tune shift for simulations using all quadrupole families as

correctors.

to our correction Ak, the tune remains invariant, i.e.

M(AKcor + Akker) = MAKcor + MAKye, = MAK o,

(9)
This allows us to move on a perpendicular plane in the
tune space where the tune remains invariant but the beta
beating changes. The goal of this method is to move in
this plane until arrive to a Akye, where the beta beating
is minimum.

To compute Ak, we followed the prescription of the
response matrix. In this case, unlike the previous one, we
measure the beta beating produced by a Ak = 0.0l m~*
in the quadrupoles and not the tune shift. Therefore, the
response matrix is

1 (Agﬂ

(12)
- S

B B

where 3 is a vector containing the horizontal component

of the beta function and consecutively the vertical com-
ponent. Further, dim(Mpg) = 240 x 12 where 240 is two
times the number of BPMs and 12 is the column dimen-
sion of the kernel of M, i.e. dimlker(M)] = 14 x 12.
Finally, the quadrupole strength in the kernel of M is
computed as

Akkcr - - ker(M) Mgl Alg/ﬁmcas’ (11)
where
AB/Brocas = ﬂwﬁ%ﬁm? (12)
D

with Byp being the beta beating measured after the intro-
duction of the insertion device and 3,,, the beta beating
measured after the correction Ak, is performed.

In this process we neglected the lattice symmetry, do-
ing the correction with all the fourteen quadrupole fam-
ilies without taking into account that families QV03-
QV04, QHO7-QH10 and QHO8-QHO09 should be changed
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in the same amount to preserve the lattice unit cell sym-
metry.

The result of the simulations is are shown in Fig. 7
where we can see that there is no great difference if com-
pared with the previous methods. Actually, Fig. 6 shows
a similar behaviour as Fig. 5. We can see another time
that the maximum values of the correction quadrupole
strengths are distributed to the families QHO01, QHO3,
QHO06, QHO7 and QH10 (this time QHO7 and QH10 act
independently).

The previous method, 11Q, produced a great incre-
ment in the beta beating when the IDs where added to
the storage ring. The same simulation has been per-
formed with this method, 14 independent quadrupole
families + beta beating minimization. As has been al-
ready mentioned, this method computes a correction,
Akpin = Akeor + Kier, that minimize the beta beating
introduced by the correction itself, leaving the tune in-

variant. Table II shows the result of the simulations using
this method. We can see that Aerfig —third column of
Table II— is of the same order, and in some cases even
lower, of the 11Q) correction —third column of Table I.

Finally, we compare the last two columns of each Ta-
ble, which present the beta beatings. First, we remember
that column ApS/fip of Table I shows the beta beat-
ing produced by the introduction of IDs. Then, column
AB/BHQ of Table T and column AB/BLAQ of Table 1T
show the beta beating obtained once the correction is
performed without minimization. Here we can see that,
in most cases, the beta beating increases in comparison
with AB/Bip, which is the expected behaviour when no
constraint on the beta beating is imposed. On the other
hand, coulmn 3/ B}flg shows the beta beating generated
by the 14Q coreection with the constraint of minimizing
the introduced beta beating. If we compare this column

D AQw  AQIS  AB/fi AB/BLS
(107 (107 (%) (%)
SCW31 0.00/0.53 —26.72/—0.72 0.00/2.12 4.41/2.06
IVU20 0.00/0.18 —2.24/0.01 0.01/0.56 1.46/0.57
IVU21 0.00/0.08 —0.15/—0.02 0.00/0.28 0.63/0.28
IvVU21 0.00/0.08 —0.15/—0.04 0.00/0.29 0.63/0.29
EPU125y 0.31/0.07 —9.17/—0.04 1.38/0.25 2.88/0.26
EPU125c  —0.60/0.63 5.69/—0.29 2.79/2.33 2.68/2.29
EPU125y  —1.48/1.15 36.75/—2.97 7.13/4.35 5.78/4.15

EPU125,,c% —0.58/0.62 5.09/ —0.26 2.69/2.30 2.64/2.26

EPU125,,v —1.48/1.15 36.75/—2.97 7.13/4.35 5.78/4.15
EPU1255."  0.06/0.23 —7.27/0.08 0.29/0.86 2.39/0.87
EPU125c. —0.02/0.24 —4.21/0.05 0.08/0.90 1.92/0.90
EPUI25v. —0.09/0.27 —2.44/0.04 0.40/0.99 1.67/0.99
EPU125.50c —0.01/0.25 —4.44/0.06 0.07/0.91 1.96/0.91
EPU125.,ve —0.09/0.27 —2.44/0.04 0.40/0.99 1.67/0.99

MPW80 0.00/0.11 —0.65/—0.08 0.01/0.59 0.92/0.59
EPU62y 0.02/0.06 —0.22/—0.02 0.08/0.26 0.63/0.26
EPU62¢ —0.06/0.09 0.37/—0.02 0.29/0.37 0.42/0.38
EPU62v —0.10/0.10 0.62/—0.02 0.48/0.44 0.46/0.44
EPU62p.c 0.00/0.08 —0.27/—0.02 0.01/0.35 0.71/0.36
EPU62p,v  —0.10/0.10 0.62/—0.02 0.48/0.44 0.46/0.44
EPUT1x 0.02/0.06 —0.32/—0.02 0.11/0.28 0.69/0.29
EPUT1c —0.08/0.11 0.51/—0.02 0.41/0.48 0.49/0.48
EPUT1v —0.14/0.14 0.93/-0.03 0.69/0.60 0.63/0.61
EPUT1ac 0.00/0.10 —0.49/—0.02 0.00/0.45 0.85/0.45
EPU7l,.v  —0.14/0.14 0.93/-0.03 0.69/0.60 0.63/0.61

D AQLR AQLS AB/BHIR AB/pL2
(107%) (107%) (%) (%)
SCW31 —6.12/ —1.19 —3.02/1.15 1.66/2.07 ().04/2.09
IVU20 —0.56/ —0.03 —1.26/0.16 0.56/0.57 0.01/0,56
IVU21 —0.06/ —0.01 —0.55/0.05 0.24/().28 0.00/0.28
IVU21 —0.06/ — 0.02 —0.56,/0.05 0.24/0.29 0.00/0.29
EPU125 —1.54/ — 0.06 —2.81/0.03 1.59/().25 1.40/0.25
EPU125¢ 5.52/ —0.88  3.19/1.96 2.42/2.29 2.74/2.31
EPU125v 35.34/ — 4.57 21.87/7.88 5.77/4.15 6.81/4.28

EPU125,,c% 5.07/ —0.84  2.90/1.90 2.34/2.26 2.65/2.27

EPU125.,v 35.34/ —4.57 21.87/7.88 5.77/4.15 6.81/4.28
EPU125i." —1.73/ —0.06 —2.22/0.27 0.94/0.86 0.29/0.86
EPU125c.  —1.00/ —0.06 —1.59/0.30 0.73/0.90 0.08/0.90
EPU125y. —0.40/ —0.08 —1.07/0.36 0.71/0.99 0.40/0.98

EPU125.p0c —1.05/ — 0.07 —1.63/0.31 0.75/0.91 0.07/0.91
EPU125.pve —0.40/ — 0.08 —1.07/0.36 0.71/0.99 0.40/0.98

MPW80  —0.18/ — 0.06 —0.81/0.09 0.36/0.59 0.01/0.58
EPU62y  —0.13/ — 0.01 —0.61/0.03 0.25/0.26 0.08/0.26
EPU62¢ 0.33/0.00  —0.07/0.07 0.28/0.38 0.29/0.37
EPU62y 0.62/0.01  0.24/0.09 0.43/0.44 0.48/0.44
EPU62p.c  —0.09/ — 0.01 —0.63/0.05 0.27/0.35 0.01/0.35
EPU62,.v  0.62/0.01  0.24/0.09 0.43/0.44 0.48/0.44
EPU7ly  —0.17/— 0.01 —0.68/0.04 0.28/0.29 0.11/0.28
EPUT1c 0.48/0.00  0.01/0.10 0.38/0.48 0.40/0.48
EPUT71y 0.96/0.00  0.43/0.15 0.61/0.61 0.69/0.60
EPUTlpac  —0.14/ — 0.01 —0.75/0.08 0.32/0.45 0.00/0.45
EPU7lp,.vy  0.96/0.00  0.43/0.15 0.61/0.61 0.69/0.60

%ap stands for anti-parallel
be stands for correction

TABLE I: Tune shift and standard deviation of the beta beat
at each BPM in a storage ring with an insertion device. The
quantities are computed before applying the correction and
after performing the correction (cor). The tune shifts have
been compared with those in [3] showing a perfect agreement.

%ap stands for anti-parallel
be stands for correction

TABLE II: Tune shift and standard deviation of the beta beat
at each BPM in a storage ring with an insertion device. The
quantities shown are the corresponding to a correction with-
out beta beating minimization (cor) and with beta beating
minimization (min).
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with AB/Bip column we see that its values are almost
the same in most of the cases. Actually, the biggest
differenece appears in the horizontal component of the
EPU125y and EPU125,,yv which is of about 4.5 %. This
results show that the 14Q) correction with a minimum in-
troduction of beta beating works since it does not worsen
the beta beating and also corrects the tune.

VII. CONCLUSIONS

At the light of these simulation result we can infer
various things. First, that the assumption we did to

chose the most effective pair of quadrupole families to
correct the tune actually works. We show this studying
Figs. 3 (last row) 5 and 6 which presented peaks in the
quadrupole strengths in those quadrupole families that
form the biggests areas the shifted-tune space, see Fig.
1. Second, that the three different proposed correction
methods, i.e. 2Q, 11Q and 14Q), also work since they
correct the tune when different type of errors are intro-
duced in the storage ring. Particularly, we saw through
the 14Q method that a correction can be performed with-
out worsen the beta beating if a contraint of minimizing
the change of the beta function introduced.

[1] E. D. Courant and H. S. Snyder, Theory of the Aternating-
Gradient Synchrotron, Ann. Phys. 281 (2000)

[2] M. Sands, The Physics of Storage Rings, An Introduction,
U. S. Atomic Energy Commission, SLAC (1970)

[3] Z. Marti, XAIRA’s Insertion Device Effect on the ALBA
Beam Dynamics, ALBA int. report ACDIV-2017-0x
(2017)
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Project’s goal

Currently, ALBA has
7 ID beamlines:

... but it has room for more beamlines.

» NCD-SWEET
» XALOC @
» LOREA
(commissioning)
» CLASS
» CIRCE
» BOREAS
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Project’s goal

Adding IDs perturbs the beam parameters ...

Need a online correction system:
tune feedback

Ignacio L. de Arbina Tune Feedback System July 2018 4/21



The betatron tune number

Betatron tune number, or simply tune, is the number of transversal
oscillations that the particles perform in one revolution.

closed orbit (impertfect)

design orbit

Ignacio L. de Arbina Tune Feedback System July 2018



Correction of a global parameter: the tune

The tune can be changed varying the strength of, at least, one
quadrupole.

| Two unknown quantities, AQ)..
AQuy = £ B39 Ak Lyyad and AQ,
One variable AL
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Correction of a global parameter: the tune

The tune can be changed varying the strength of, at least, one
quadrupole.

| Two unknown quantities, AQ)..
AQuy = £ B39 Ak Lyyad and AQ,
One variable AL

We need at least two quadrupoles, providing Ak; and Aks, to correct
the working point.

Working point = (Qz, @)
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Procedure

Simulations
Accelerator Toolbox
Matlab
Middle Layer
i

Real machine
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Linear relation between AQ and Ak:

AQ = MAk

The tune response matrix:

1 (AQY AQY
Ak

Mg = —
2Q AQ;(yl) AQy(f)

The correction to apply to the quadrupoles:

AI<cor — _Mz_QlAQmeas
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11Q correction: preserving lattice symmetry

The tune response matrix of 11Q:

1 (AQ - AtV
Miq = = (1) (11)
Ak AQy o AQy

But My1q is not square — SVD method

Mng = USVT
Mg = VS—HUT

The correction:

—1
AI<cor — _M]]QAQmeos

THIS CORRECTION DCESN'T CARE ABOUT THE BETA BEATING!
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14Q correction: beta beating minimization

MMQ fulfills

Misq(Akeor + Akyer) = MisqAkeor + MisgAkyer = MisgAkeor

Ak, belongs to the kernel or null space of M4q, hence

Akyer DO NOT CHANGE THE TUNE!
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14Q correction: beta beating minimization

In order to minimize the beta beating contribution of the cor-
rection Aky., must fulfil

AI<ker — = ker(MMQ)MglA/B//Bmeqs

where .
_ _— (aW Al
Ms Ak( B B )
and 3 3
AB/Breas = =5 =
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Simulation results

Simulations with IVU21, EPU62y and EPU71y

TUNE SHIFT
AQp AQ2q AQnq AQ4q
(104 (10~%) (104 (10~%)

—24/39 -0.79/—0.03 —-0.35/—0.05 —0.005/ — 0.006

BETA BEATING STANDARD DEVIATION

AB/Bp  ApPa/B  Abna/B  ABua/B
(%) (%) (%) (%)
0.63/1.12 2.63/1.11 1.86/1.12 0.63/1.10
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Figure 1; Tune correction GUI
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Interface

Figure 1: Tune correction GUI
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First experiment: Beta beating measures

gDs closed 11Q respect to closed IDs open 11Q respect to open

_[ix

IDs open respect to model IDs closed respect to open
ﬁy

) Q °° A f t °°
E S U i AR | 0
% 0
<
5 5

ABIB [%]

0Tl

-5 -5 o 100 200 o 100 200
0 100 200 0 100 200 s [m] s [m]

s [m] s [m]
IDs open 2Q respect to open

ABIB [%]
o

IDs open 14Q respect to open

gDs closed 14Q respect to closed
IDs closed 2Q respect to closed

u

5 5 e ~
| 2 IO s
-5 -5 25 100 200 >0 100 200
0 100S i 200 0 100S i 200 s[m] s [m]

We measured a beta beating with the 14Q method as large as the 2Q
where we expected the lower modification of the beta beating using

the 14Q method.
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First experiment: Quadrupole intensities measures

500
<
L=
3 0
(0]
=
_C_
<
-500
Meas.Num.
10 i |
5 -
™
=
S close ooen close | close
_5 - : : |
open | open :
E P open : open open
-10 — o
0 500 1000 1500
Meas.Num.

The 14Q method produced a huge drift in the qudrupoles.
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Second experiment: Quadrupole intensities measures
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We recovered the same results as in the first experiment.
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Conclusions

1. The simulations results show the expected behaviour: the

correction of the tune and beta beating minimization with 14Q
method works.

2. The experiments show that:

» the tune is indeed corrected but the beta beating minimization
with the 14Q method is affected by the correction.

» 14Q correction produces a drift in the quadrupoles.

A SOLUTION TO THIS ISSUE MUST BE FOUND!
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