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Abstract 
 
A new pass method named GWigSymplecticRadPass, which simulates the trajectory of an 
electron in an insertion device -wiggler and ondulator- given the initial conditions, has been 
created. This method is a modification of GWigSym- plecticPass which did not take into 
consideration classical radiation loss. 
 
The first part of the report consists on the presentation of the symplectic map used in the pass 
method. Then all the subroutines and functions added to the method are explained in detail. 
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1 Introduction

A new pass method named GWigSymplecticRadPass, which simulates the
trajectory of an electron in an insertion device -wiggler and ondulator- given the
initial conditions, has been created. This method is a modification of GWigSym-

plecticPass which did not take into consideration classical radiation loss.

The first part of the report consists on the presentation of the symplectic
map used in the pass method. Then all the subroutines and functions added to
the method are explained in detail. Finally, a numerical comparison between
AT method, Elegant method and the analytic result is done.

2 Insertion devices’ symplectic map

According to Ref. [1], the second order symplectic map of a general s-dependent
static magnetic field is:
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where we can distinguish three different Lie maps obtained from exactly
solvable Hamiltonian. A detailed development and the solution of all three
maps can be founded in Ref. [1].

3 New subroutines and functions

As said in the introduction, some new subroutines and functions have been
added in order to implement the radiation loss. In this part of the report we
will introduce this new part that have been added to the library gwigrad.c

which is used instead of gwig.c.
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3.1 rad loss subroutine

This subroutine contributes to the determination of the radiation loss. rad loss

is the first subroutine to be explained since it is the one that fix us all the new
information we need to determine. It has four arguments:

1. double *X: initial position of the electron and at the end of the subroutine
it has the new coordinates.

2. double B2P: square of the component of the magnetic field which is per-
pendicular to the velocity.

3. double L: length of the insertion device.

4. double irho: inverse of the bending radius.

Taking all this into consideration we can determine the energy change with
the following formula:

δf = δ0 + dδ (2)

where:

dδ = −CRAD(1 + δ)2|~e× ~B|2
(

1 +
x

ρ
+
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)

dL (3)

which is demonstrated in Ref. [2]. Not only do radiation loss affect the
energy, it also echoes on the momentum with:

x′i
f = x′i

0

δf

δ0
, for i = x, y (4)

We can easily see how dδ < 0 and |x′i
f | < |x′i

0
|.

3.2 B2perp function

The aim of this subroutine is to determine the square of the component of the
magnetic field which is perpendicular to the velocity, that is, |~e × ~B|2 where ~e

is velocity unit vector. It has three arguments:

1. double bx: x component of the magnetic field.

2. double by: y component of the magnetic field.

3. double *X: position of the electron.

Let’s start determining the cross product between the velocity unit vector
and the magnetic field:

~e× ~B =
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We can easily see how:

|~e× ~B|2 = (eyBz − exBy)
2 + (ezBx − exBz)

2 + (exBy − eyBx)
2 (6)

Finally, it is only necessary to determine the velocity. It can be proven that:

vi = cx′i

√

E2

id −m2c4

Eid(1 + δ)
, for i = x, y (7)

where the demonstration can be found in Ref [3].

3.3 GWigBx, GWigBy and GWigBz subroutines

This both subroutines determine the magnetic field generated by an insertion
device for a certain position. These are quite similar to GWigAx and GWigAy

subroutines which determine the vector potential. Both of them have three
arguments where in the case of GWigBx are:

1. struct gwig *pWig: structure that holds the parameters of the insertion
device.

2. double *Xvec: position of the electron.

3. double *pbx: output argument which holds the value of the x component
of the magnetic field.

The only difference we find at GWigBy and GWigBz is that the last ar-
gument is called *pby and *pbz, respectively. We shall remember that the
parameters of an insertion device are presented like:

B = [ 1, C1, kx1, ky1, kz1, θ1;

2, C2, kx2, ky2, kz2, θ2;

3, C3, kx3, ky3, kz3, θ3;

. . . ]

(8)

where Cmn are the relative amplitudes of wiggler harmonics, kw is the wiggler
frequency and θn is the relative phase of the nth wiggler harmonic. All this
parameters have to accomplish the following conditions: k2ym = k2xl+k2zn, kzn =

nkw and kw = 2π
λw

where λw is the wiggler period. With this given we can
determine the magnetic field for an horizontal and vertical planar wiggler. If we
start with the horizontal wiggler:
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∑
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(9)
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For obtaining the magnetic field of the vertical wiggler we have to change
x to y and y to −x in the above expressions. If we do it we obtain:

Bx
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∑
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(10)

More information about the parameters of the wiggler can be found in Ref [1]
and Ref [4].

3.4 wigg radloss subroutine

Finally, this subroutine is the one that unify all the subroutines and functions
that were introduced before. It has three arguments:

1. struct gwig *pWig: structure that holds the parameters of the insertion
device.

2. double *X: initial position of the electron and at the end of the subroutine
it has the new coordinates.

3. double L: length of the insertion device.

First of all this subroutine determines the magnetic field and the vector
potential but we need both of them for different purposes. On one hand, the
magnetic field is determined since it is needed for determining the radiation loss
in rad loss subroutine. On the other hand, vector potential is needed since we
need to apply radiation loss to the relativistic kinetic momentum, not to the
whole momenta. We shall remember that the definition of the momenta px and
py is:

px,y =
[ ~K + e ~A(x, y, z)]~ex,y

p0
(11)

where e is the electron charge, ~K is the relativistic kinetic momentum and ~A

is the vector potential [5]. Thus, before applying the radiation loss we have to
subtract the vector potential. Then rad loss is applied and later we add again
the vector potential.

4 AT vs Elegant vs analytic results

In order prove that this method has a proper functioning we have run some
simulations to compare this method to the one used in Elegant code. We have
considered a simple wiggler that has analytic solution for comparing our results
to the analytic ones. The parameters of our wiggler are:
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1. Peak of the magnetic field: Bmax = 0.55T

2. Length of the wiggler: L = 0.60m

3. Length of a period: λ = 0.10m

4. B = [ 1, 1.0, 0.0, 1.0, 1.0, 0.0 ]

If we plot the magnetic field generated by a wiggler of this parameters we
obtain something like this:

Figure 1: Magnetic field generated along the z axis.

We can clearly see how the magnetic field behaves as:

By(T ) = −Bmax cos

(

2π

λ
z

)

= −0.55 cos

(

2π

0.10
z

)

(12)

Since the equation of motion of an electron under paraxial approximation is
given by:

ẍ =
e

γm0c
(By − ẏBz)

ÿ =
e

γm0c
(ẋBz −Bx)

(13)

We can find that the trajectory of the electron will be:
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e

γm0c
B0

(

λ

2π

)2 [

cos

(

2π

λ
z

)

+ 1

]

y(z) = 0
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where for obtaining this solution we have not included any change due to
radiation loss.
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4.1 Energy loss

Using eq. (4.13) of Sands [6] we can determine in an analytic way the energy
loss. We will compare this value to the one obtained with AT and Elegant for
the wiggler detailed before and for an electron moving along the ideal orbit. We
can obtain:

Radiation loss
Nsteps=2 Nsteps=5 Nsteps=15 Nsteps=48

Sands 3.444335e-07 3.444335e-07 3.444335e-07 3.444335e-07
AT 6.965252e-07 3.444330e-07 3.444330e-07 3.444330e-07
Elegant 7.464168e-07 3.674669e-07 3.521557e-07 3.468925e-07

Table 1: Comparison of the energy loss determined by eq. (3) between different
methods as function of the integration steps per period. In both methods the
simulations have been run with a fourth order symplectic map.

We can clearly see how Elegant code has a slower convergence to the analytic
result rather than AT method. This is due to the fact that Elegant code does
more approximations than AT code. We shall remember that the analytic result
has been obtained approximating the trajectory of the electron with the one that
does not present radiation loss.

4.2 Physical space and phase space trajectory

Another way of proving the successful behaviour of AT method is comparing the
physical space and phase space trajectory of an electron between this method
and the analytic result. Of course there will be discrepancies since one of them
does not consider radiation loss but in any way this could be a good test.
Considering again an electron moving towards along the ideal orbit we obtain:

(a) Physical space trajectory (b) Phase space trajectory

Figure 2: Comparison between AT method and analytic results.

We can see how in both trajectories a small damping on the trajectory can
be noticed when considering radiation loss in comparison to the one without it.
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4.3 Initial condition dependence

Since Elegant code does more approximations than AT code it is interesting to
compare both methods for different initial conditions. Some simulations have
been run for the same wiggler than before and Nsteps = 48 in both cases. That
is what obtained:

Figure 3: Energy relative error as function of different initial x and y coordinate
positions.

Figure 4: Position and momenta relative error as function of different initial x
and y coordinate momenta.

We can clearly see how the differences in energy are lower than 0.1% and
regarding position and momenta their relative error is lower than 10−5%.

In addition, another pass method named GWigSymplectic3GeVRadEleg

Pass has been created which works under the same approximations that Ele-
gant does.
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5 Conclusions

As a sum, it has been proven that from now on AT code has a pass method for
an insertion device with radiation. The difference between this method and the
one implemented in Elegant holds on the several approximations done in this
last one.
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6 Annex

6.1 rad loss: the code

void r a d l o s s (double ∗X, double B2P, double L , double i rho , double E0)
{ /*This subroutine determines the radiation loss of the wiggler*/

double TWOPI = 6.28318530717959 ;
double CGAMMA = 8.846056192 e−05; /* m GeV-3 */

double CRAD = CGAMMA∗E0∗E0∗E0/(TWOPI∗1 e27 ) ; /* m */

double c = 299792458; /* m s-1 */

double e = 1 ;
double dp 0 , dDelta , Brho ;

dp 0 = X[ 4 ] ;
Brho = E0/( e∗c ) ;
dDelta = − CRAD∗SQR(1+X[ 4 ] ) ∗B2P∗(1 + X[ 0 ] ∗ i r ho +

+ 0.5 e0 ∗(SQR(X[1 ] )+SQR(X[ 3 ] ) ) /SQR(1+X[ 4 ] ) ) ∗L/SQR(Brho ) ;
X[ 4 ] = X[ 4 ] + dDelta ;
X[ 1 ] = X[1 ]∗ ( (1+X[4 ] ) / (1+ dp 0 ) ) ;
X[ 3 ] = X[3 ]∗ ( (1+X[4 ] ) / (1+ dp 0 ) ) ;

}

6.2 B2perp: the code

double B2perp (double bx , double by , double bz , double ∗X, double E0)
{ /*Calculates sqr(|e x B|) , where e is a unit vector in the direction

of velocity*/

double coe f , vx , vy , vz , gamma,E, vmod ;
double mc2=0.510998928 e6 ; /* eV */

double c=299792458; /* m s-1 */

E=E0∗(1+X[ 4 ] ) ;
gamma=E/mc2 ;
vmod=c∗ s q r t (1−1/(gamma∗gamma ) ) ;
c o e f=(c∗ s q r t (E0∗E0−mc2∗mc2 ) ) / (mc2∗gamma) ;
vx=X[ 1 ] ∗ co e f ;
vy=X[ 3 ] ∗ co e f ;
vz=sq r t (vmod∗vmod−vx∗vx−vy∗vy ) ;
return ( (SQR( bz∗vy−by∗vz ) + SQR(bx∗vz−bz∗vx ) + SQR(bx∗vy−by∗vx ) )/SQR(vmod ) ) ;

}
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6.3 GWigBx : the code

void GWigBx(struct gwig ∗pWig , double ∗Xvec , double ∗pbx )
{

int i ;
double x , y , z , Cmn;
double kx , ky , kz , t z ;
double sx , shy , cz ;
double chx , cy ;
double bx , BMAX;

x = Xvec [ 0 ] ;
y = Xvec [ 2 ] ;
z = pWig−>Zw;
BMAX = pWig−>PB0 ;
bx = 0e0 ;

/* Horizontal Wiggler: note that one potentially could have: kx=0 */
for ( i = 0 ; i < pWig−>NHharm; i++) {

Cmn= pWig−>HCw raw [ i ] ;
kx = pWig−>Hkx [ i ] ;
ky = pWig−>Hky [ i ] ;
kz = pWig−>Hkz [ i ] ;
t z = pWig−>Htz [ i ] ;

sx = s i n ( kx ∗ x ) ;
shy = s inh ( ky ∗ y ) ;
cz = cos ( kz ∗ z + tz ) ;
bx = bx + BMAX∗(Cmn∗kx/ky )∗ sx∗ shy∗ cz ;

}
/* Vertical Wiggler: note that one potentially could have: ky=0 */
for ( i = 0 ; i < pWig−>NVharm; i++ ) {

Cmn= pWig−>VCw raw [ i ] ;
kx = pWig−>Vkx [ i ] ;
ky = pWig−>Vky [ i ] ;
kz = pWig−>Vkz [ i ] ;
t z = pWig−>Vtz [ i ] ;

chx = cosh ( kx ∗ x ) ;
cy = cos ( ky ∗ y ) ;
cz = cos ( kz ∗ z + tz ) ;
bx = bx + BMAX∗Cmn∗chx∗cy∗ cz ;

}
∗pbx = bx ;

}
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6.4 GWigBy : the code

void GWigBy(struct gwig ∗pWig , double ∗Xvec , double ∗pby )
{

int i ;
double x , y , z , Cmn;
double kx , ky , kz , t z ;
double cx , chy , cz ;
double shx , sy ;
double by , BMAX;

x = Xvec [ 0 ] ;
y = Xvec [ 2 ] ;
z = pWig−>Zw;
BMAX = pWig−>PB0 ;
by = 0e0 ;

/* Horizontal Wiggler: note that one potentially could have: kx=0 */
for ( i = 0 ; i < pWig−>NHharm; i++) {

Cmn= pWig−>HCw raw [ i ] ;
kx = pWig−>Hkx [ i ] ;
ky = pWig−>Hky [ i ] ;
kz = pWig−>Hkz [ i ] ;
t z = pWig−>Htz [ i ] ;

cx = cos ( kx ∗ x ) ;
chy = cosh ( ky ∗ y ) ;
cz = cos ( kz ∗ z + tz ) ;
by = by − BMAX∗Cmn∗cx∗chy∗ cz ;

}
/* Vertical Wiggler: note that one potentially could have: ky=0 */
for ( i = 0 ; i < pWig−>NVharm; i++ ) {

Cmn= pWig−>VCw raw [ i ] ;
kx = pWig−>Vkx [ i ] ;
ky = pWig−>Vky [ i ] ;
kz = pWig−>Vkz [ i ] ;
t z = pWig−>Vtz [ i ] ;

shx = s inh ( kx ∗ x ) ;
sy = s i n ( ky ∗ y ) ;
cz = cos ( kz ∗ z + tz ) ;
by = by − BMAX∗(Cmn∗ky/kx )∗ shx∗ sy∗ cz ;

}
∗pby = by ;

}
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6.5 GWigBz : the code

void GWigBz(struct gwig ∗pWig , double ∗Xvec , double ∗pbz )
{

int i ;
double x , y , z , Cmn;
double kx , ky , kz , t z ;
double cx , shy , sz ;
double shx , cy ;
double bz , BMAX;

x = Xvec [ 0 ] ;
y = Xvec [ 2 ] ;
z = pWig−>Zw;
BMAX = pWig−>PB0 ;
bz = 0e0 ;

/* Horizontal Wiggler: note that one potentially could have: kx=0 */
for ( i = 0 ; i < pWig−>NHharm; i++) {

Cmn= pWig−>HCw raw [ i ] ;
kx = pWig−>Hkx [ i ] ;
ky = pWig−>Hky [ i ] ;
kz = pWig−>Hkz [ i ] ;
t z = pWig−>Htz [ i ] ;

cx = cos ( kx ∗ x ) ;
shy = s inh ( ky ∗ y ) ;
sz = s i n ( kz ∗ z + tz ) ;
bz = bz + BMAX∗(Cmn∗kz/ky )∗ cx∗ shy∗ sz ;

}
/* Vertical Wiggler: note that one potentially could have: ky=0 */
for ( i = 0 ; i < pWig−>NVharm; i++ ) {

Cmn= pWig−>VCw raw [ i ] ;
kx = pWig−>Vkx [ i ] ;
ky = pWig−>Vky [ i ] ;
kz = pWig−>Vkz [ i ] ;
t z = pWig−>Vtz [ i ] ;

shx = s inh ( kx ∗ x ) ;
cy = cos ( ky ∗ y ) ;
sz = s i n ( kz ∗ z + tz ) ;
bz = bz − BMAX∗(Cmn∗kz/kx )∗ shx∗cy∗ sz ;

}
∗pbz = bz ;

}



CHAPTER 6 ANNEX 13

6.6 wigg radloss: the code

void w i gg r ad l o s s (struct gwig ∗pWig , double ∗X, double L)
{ /*This subroutine applies the radiation loss*/

double B2P, bx , by , ax , ay , axpy , aypx , i rho ;
double E0 = pWig−>E0∗1 e9 ; /* eV */
double c = 299792458; /* m s-1 */
double e = 1 ;
GWigBx(pWig , X, &bx ) ;
GWigBy(pWig , X, &by ) ;
GWigAx(pWig , X, &ax , &axpy ) ;
GWigAy(pWig , X, &ay , &aypx ) ;
B2P=B2perp (bx , by , X, E0 ) ;
i rho=e∗c∗ s q r t (B2P)/(E0∗(1+X[ 4 ] ) ) ;
X[ 1 ] −= ax ;
X[ 3 ] −= ay ;
r a d l o s s (X, B2P, L , i rho , E0 ) ;
X[ 1 ] += ax ;
X[ 3 ] += ay ;

}


