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Abstract 
 
A new pass method named DriftNoParaxPass, which simulates the trajectory of an electron in 
a straight path given the initial conditions, has been created. That is simulated too in DriftPass 
but considering paraxial approximation. This approximation consists on: 
1. x; y << _ 
2. x0; y0 << 1 
3. _ << 1 
The first part of the report consists on the derivation of the non-paraxial formulas used in the 
pass method. Then a numerical comparison between the two methods is done in three 
different ways: comparing trajectories, tunes and tracking computation times for the ALBA 
lattice. Finally, in the annex we will prove that imposing the paraxial approximation we arrive 
to the same formulas used in DriftPass. 
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1 Introduction

A new pass method named DriftNoParaxPass, which simulates the trajec-
tory of an electron in a straight path given the initial conditions, has been
created. That is simulated too in DriftPass but considering paraxial approxi-
mation. This approximation consists on:

1. x, y << ρ

2. x′, y′ << 1

3. δ << 1

The first part of the report consists on the derivation of the non-paraxial
formulas used in the pass method. Then a numerical comparison between the
two methods is done in three different ways: comparing trajectories, tunes
and tracking computation times for the ALBA lattice. Finally, in the annex
we will prove that imposing the paraxial approximation we arrive to the same
formulas used in DriftPass.

2 Theoretical development

First of all we need to know which are the initial parameters we know. We have
as an input the 6 dimensional vector that is commonly used in all pass methods:
[x0 x

′

0
y0 y

′

0
δ0 s0] where

′ = d
dsid

, the ideal energy Eid, and l is the drift’s length.

Now we can introduce all the formulas we will need:

|~p| = 1

c

√

E2 −m2c4 (1)

E = γmc2 (2)

pµ = mγ(c, vx, vy, vs) (3)

γ =
1

√

1− ( v
c
)2

(4)
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x′ =
px

| ~pid|
(5)

∆s = − 1

βid

(l − vidt) (6)

The first and the second formulas come from the value of the energy for
a relativistic particle. The third formula is the relation between velocity and
momentum. The fourth formula is the definition of Lorentz coefficient. Finally,
the fifth formula is the definition of the canonic variable x′, and the sixth formula
is the definition of the canonical momentum associated to the δ variable -see
Nadolsky thesis [1].

2.1 Mathematical development

First of all we will determine the time that the particle takes to travel along the
whole section. This is determined by:

t =
l

vs
(7)

Now we use equation (2) in order to determine Lorentz factor for two par-
ticles. The real particle -the one we want to determine its movement- and the
ideal particle -that is, the one with no deviation and with the ideal energy:

γ =
Eid(1 + δ)

mc2
, γid =

Eid

mc2
(8)

where we have taken into account that E = Eid(1+ δ). If we want to obtain
vx, vy as function of x′, y′ we can use equation (1) and (3) respectively in order
to archive the following:

x′ =
px

| ~pid|
=

px
1

c

√

E2

id −m2c4
= vx

γcm
√

E2

id −m2c4
(9)

So, if we isolate vx:

vx = x′

√

E2

id −m2c4

γcm
= cx′

√

E2

id −m2c4

Eid(1 + δ)
(10)

Since we can do the same to y coordinate, we can obtain:

vy = y′
√

E2

id −m2c4

γcm
= cy′

√

E2

id −m2c4

Eid(1 + δ)
(11)

As we know γ and γid, we can determine |~v| and | ~vid| using equation (4):

|~v| = c

√

1− 1

γ2
, | ~vid| = c

√

1− 1

γ2

id

(12)

And that is the way we will find the last component of the velocity, vs:

vs =
√

|~v|2 − v2x − v2y (13)
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Finally, the coordinates at the end of the straight path will be:

x = vxt+ x0 (14)

x′ = x′

0
(15)

y = vyt+ y0 (16)

y′ = y′
0

(17)

δ = δ0 (18)

s = −cl(
1

| ~vid|
− 1

vs
) + s0 (19)

where we have used equation (6) and other relations in order to obtain the
behaviour of s.

3 Comparison with paraxial approximation

3.1 Trajectory

In order to know how this method behaves in comparison with the paraxial
approximation, we can plot the two trajectories for different initial conditions
for the ALBA lattice. If we start with the x coordinate:

(a) x0 = 5mm (b) x0 = 15mm

Figure 1: Graphic representation of the trajectory of an electron in the x coor-
dinate for two different initial displacements. We can see that in the first one
(x0 = 5mm) there is no significant difference between the paraxial approxima-
tion and the one without approximation. On the other hand, we can see that
in the second case (x0 = 15mm) the initial amplitude is big enough to have
significant changes in the trajectory.
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Now if we do the same for the y coordinate:

(a) y0 = 1mm (b) y0 = 7mm

Figure 2: Graphic representation of the trajectory of an electron in the y co-
ordinate for two different initial conditions. As before, we can see that in the
first one (y0 = 1mm) there is no significant difference but in the second one
(y0 = 7mm) there is.

Something interesting we can plot too is the difference between trajec-

tories for both coordinates:

Figure 3: Difference between the trajectory of the paraxial approximation and
the non-paraxial for x coordinate.
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Figure 4: Difference between the trajectory of the paraxial approximation and
the non-paraxial for y coordinate.

Finally, we can determine the standard deviation for different initial am-
plitudes and see how it behaves. What we can expect is that it increases with
the initial amplitude and that is what we find:

Figure 5: Comparison between the standard deviation of x coordinate and y
coordinate as function of the initial deviation for 100 turns.
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3.2 Tune

Probably something more important than the change of trajectory is the change
of tune -or betatronic number- since it can affect the machine lifetime and in-
jection efficiency. We can see its change if we plot -as we have done before- both
tunes and the difference between them for 100 turns.

After the analysis of the data we can confirm that tune and chromaticity

are not affected -the effect in chromaticity is of the order of 10−5.

(a) x coordinate (b) y coordinate

Figure 6: Graphic representation of the tune of an electron for each coordinate
and both methods -with and without approximation.

(a) x coordinate (b) y coordinate

Figure 7: Difference between tunes. For x coordinate the non-paraxial tune is
smaller than the paraxial one. On the other hand, for y coordinate the non-
paraxial is larger than the paraxial one. We can see that there is not a significant
difference between both coordinates for the electrons that are near the centre
of the tube (δνi ≃ 10−4) but for the ones that have big oscillations the tune
change is significant (δνi ≃ 10−2).
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3.3 Tracking computation time

One last comparison is needed to be done in order to have a quite complete
comparison. Something we can ask to ourselves is which is the difference be-
tween these two methods but from the point of view of time optimization.
We can expect this method to be slower than the other one since it needs more
complex operations as square roots.

For the ALBA lattice we have run several turns and the difference between
both methods is that non-paraxial approximation requires almost 70% more

time than the paraxial approximation. This is probably the most im-
portant difference to consider while choosing a method to carry out our long
simulations.
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4 Annex

4.1 Derivation of the paraxial approximation

In order to prove that the proposed method is correct we derive the paraxial
formulas from the ones we obtained assuming the approximations. First of all,
let’s introduce the paraxial formulas:

x = x′
l

1 + δ
+ x0 (20)

x′ = x′

0
(21)

y = y′
l

1 + δ
+ y0 (22)

y′ = y′
0

(23)

δ = δ0 (24)

s =
l

2(1 + δ)2
(x′2 + y′2) + s0 (25)

If we compare them with the equations we obtained we realize that we have
to prove the following in the paraxial approximation:

vxt → l
x′

1 + δ
(26)

vyt → l
y′

1 + δ
(27)

−c(
1

| ~vid|
− 1

vs
) → x′2 + y′2

2(1 + δ)2
(28)

Let’s start with the first one. First of all we write:

vx = cx′

√

E2

id −m2c4

Eid(1 + δ)
≃ cx′

1

1 + δ
(29)

where we have considered Eid >> mc2. Now we can say that vs ≃ c since
we are considering the paraxial approximation, that is, the angle is very small
so there is a big loss of velocity in the transversal components. Assuming that:

t =
l

vs
≃ l

c
(30)

Being that said we can arrive to:

vxt ≃ l
x′

1 + δ
(31)

And since we can do the same for y component, we have:

vyt ≃ l
y′

1 + δ
(32)
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Finally we only have to prove one last limit. The very first we have to do is:

| ~vid| = c

√

1− 1

γ2

id

≃ c(1− 1

2

1

γ2

id

) ≃ c(1− 1

2

m2c4

E2

id

) (33)

vs =
√

|~v|2 − v2x − v2y = |~v|
√

1−
v2x + v2y

|~v|2 ≃ |~v|(1− 1

2

v2x + v2y

|~v|2 ) (34)

where in both cases we have used the approximation:

√
1− x ≃ 1− 1

2
x+O(x2), if x → 0 (35)

Now we can do:

1

| ~vid|
≃ 1

c
(1 +

1

2

m2c4

E2

id

) (36)

1

vs
≃ 1

|~v| (1 +
1

2

v2x + v2y

|~v|2 ) (37)

where we have used the approximation:

1

1− x
≃ 1 + x+O(x2), if x → 0 (38)

If we put all together:

c(
1

| ~vid|
− 1

vs
) ≃ 1

2
(
m2c4

E2

id

−
v2x + v2y

|~v|2 ) (39)

And since Eid >> mc2, we can ignore the first term:

c(
1

| ~vid|
− 1

vs
) ≃ −1

2

v2x + v2y

|~v|2 (40)

Finally, since vi ∼ x′

i (for i=1,2) we can see that the dependence on this
coordinate is of the same order that in the paraxial approximation. Probably
the third and higher orders disagree with paraxial approximation but this is
enough in order to assert that both methods have the same behaviour in the
paraxial approximation.
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5 Annex 2

5.1 DriftNoParaxPass.c: the code

This is the C-code used in order to replace DriftPass and then establish the
non-paraxial method:

#include <math . h>
#include ”mex . h”
#include ” elempass . h”
#include <s t d i o . h>

void Dr i f tPas s (double ∗ r i n , double l e , int num part i c l e s , double Eid )
/* le - physical length

* r in - 6-by-N matrix of initial conditions reshaped into

* 1-d array of 6*N elements

*/

{ int i , i 6 ;
double mc2=0.511 e6 , c=299792458;
double gamma, E, t , vx , vy , vs , coe f , vmod , vmod id , gamma id ;

for( i = 0 ; i<num par t i c l e s ; i++)
{ i 6 = i ∗6 ;

if ( ! mxIsNaN( r i n [ i 6 ] ) )
{

E=Eid∗(1+ r i n [ i 6 +4 ] ) ;
gamma=E/mc2 ;
gamma id=Eid/mc2 ;
vmod=c∗ s q r t (1−1/(gamma∗gamma ) ) ;
vmod id=c∗ s q r t (1−1/(gamma id∗gamma id ) ) ;
c o e f=(c∗ s q r t ( Eid∗Eid−mc2∗mc2 ) ) / (mc2∗gamma) ;
vx=r i n [ i 6 +1]∗ co e f ;
vy=r i n [ i 6 +3]∗ co e f ;
vs=sq r t (vmod∗vmod−vx∗vx−vy∗vy ) ;
t=l e /vs ;
r i n [ i 6+0]+= t ∗vx ;
r i n [ i 6+2]+= t ∗vy ;
r i n [ i 6+5]−= c ∗( l e−t ∗vmod id )/ vmod id ;

}

}
}


