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Abstract 
 

The purpose of the thesis was testing and validating the turn-by-turn (TBT) beam position 
measurement technique applied to the study of the linear and non-linear beam dynamics of 
synchrotron light sources. 
 
The research started by developing a representation of the beam dynamics derived from a 
perturbative approach, which agreed with numerical simulations (tracking) within a 0.1%. 
Moreover, in order to obtain experimental data, the beam position monitor electronics 
firmware was replaced with a new one (Moving Average Filter, MAF) designed ad-hoc for 
TBT applications, and next, a novel optimized spectral analysis procedure was developed to 
properly treat the BPM data. The linear beam dynamics studies achieved a level of agreement 
comparable to the standard techniques (i.e. based on orbit response matrix). The experiments 
showed how the TBT technique shines in sensitivity, enabling the detection of very small 
variations of the optics function. This allowed applying the TBT technique, for the first time in 
a light source, to the measurement of localized transverse impedance sources. Finally, the 
thesis shows how tiny impedance sources can still be properly characterized by manipulating 
the machine optics. This method has been used to characterize impedances as small as the 
ALBA IVUs' one. 
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Universitat Autònoma de Barcelona

Jury:

Dr. Caterina Biscari
ALBA-CELLS

Dr. Yuri Kubyshin
Universitat Politècnica de Catalunya
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Introduction

Figure 0.1. The 70MeV electron synchrotron at the General
Electric Company (Schenectady, New York) in 1947. A glass beam-
pipe made it possible to observe the synchrotron radiation for the
first time.

ALBA is a third generation light source, commissioned in 2011, serving a

national and international scientific and industrial community. It provides syn-

chrotron radiation up to the hard x-rays as a tool to multiple laboratories (beam-

lines) for a wide range of physical, chemical, and biological experiments.

In order to achieve the required radiation flux and small divergence, the elec-

tron storage ring employs an optimized design where strong magnets (dipoles,

quadrupoles and sextupoles) are combined in a rather complex lattice to prop-

erly shape the characteristics of the electron beam. However, the lattice can have

several errors, which detrimentally affect the electron beam characteristics such as

size, divergence, or lifetime.
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6 INTRODUCTION

Unavoidable lattice errors can be due to manufacturing mechanical tolerances,

magnet hysteresis, thermal variations and/or mechanical misalignments. The deli-

cate ”magnetic equilibrium” required to operate such light sources could be hardly

met without a tool to measure and correct the actual magnetic lattice. For this

purpose beam-based methods, where the stored beam serves as probe to inspect

the lattice, have been developed [45] during the past years.

Closed orbit response matrix measurement methods received particular atten-

tion in the light sources community, and at ALBA it has been the workshorse to

measure and correct magnet lattice errors [11].

In the closed orbit response matrix measurements approach, the orbit corrector

magnets are varied one after the other and the resulting orbit change monitored

using the Beam Position Monitors (BPMs). The dependency of the orbit change

on the lattice parameters is then inverted in order to reconstruct a set of lattice

errors. The large number of corrector magnets and BPMs allows to reconstruct an

accurate linear lattice error model. However, the high precision of the closed orbit

response matrix method comes at the cost of a time consuming measuring process,

typically around 10 minutes in a synchrotron.

A different approach, commonly used in larger rings such as colliders, where

the large number of lattice elements prevents from using a closed orbit approach,

is provided by beam position turn-by-turn measurements. By abruptly displacing

(ping) the beam from its equilibrium transverse orbit, and sampling the resulting

transverse motion turn after turn, the lattice errors model is inferred. Since only a

fast kicker magnet (pinger) is used, the method is in principle faster than the orbit

response matrix approach. Furthermore, turn-by-turn measurements allow to sepa-

rate easily the contribution of linear and non-linear lattice components that happen

to affect different oscillatory modes of the transverse beam motion. Unfortunately

an accurate turn-by-turn measurement requires special high bandwidth BPM elec-

tronics that usually are not included in the ordinary diagnostic instrumentation of

a synchrotron light source.

The main purpose of this PhD work is to implement for the first time the

turn-by-turn technique at ALBA in order to establish the capabilities of the mea-

surements in the context of linear and non-linear lattice errors. Joining the effort to



INTRODUCTION 7

test the capabilities of the turn-by-turn technique already underway in other light

sources [8, 10, 21, 37], we conducted a series of experiments at the ALBA syn-

chrotron, employing the state of the art BPMs electronics. In addition we repeat

a similar set of experiments at the SOLEIL synchrotron, to compare them with

previous tests [46] and confirm the reliability of the turn-by-turn method in third

generation of synchrotron light sources.

Furthermore, the achieved precision of the turn-by-turn technique in this PhD

work allows to apply it for the first time to characterize multiple transverse cou-

pling impedance sources in a synchrotron light source. The electromagnetic inter-

action of the stored beam with the vacuum chamber (commonly known as coupling

impedance) introduces a coupling mechanism to the beam motion, which can re-

sult in a beam instability if certain conditions are met. The PhD thesis shows that

the characterization of the coupling impedance can be obtained with a technique

similar to the ones used to monitor the magnetic lattice, since the presence of an

impedance source is always accompanied by a local small beam defocusing.

The work is organized as follows:

In the first section of Chapter 1 the basic physics of a storage ring is introduced

with particular attention to the linear transverse beam dynamics. In the second

section the effect of linear, coupling and non-linear perturbations on the transverse

beam dynamics are studied with a perturbative approach. A set of approximated

analytical formula, that will be employed in the analysis of the experimental results,

are derived.

In Chapter 2 the lattice of ALBA and SOLEIL are presented. Moreover the

ALBA lattice is employed to carry out a series of tests where the approximated

analytical formula derived in the previous chapter are compared against numerical

simulations (tracking) to prove their validity.

In Chapter 3 an introduction to the basics of a BPM system is provided. Fur-

thermore technical details of the BPM system employed in the ALBA and SOLEIL

storage rings are presented.

Chapter 4 covers the description of the ALBA pinger magnet. In fact to carry

out turn-by-turn measurements, the installation of a purposely build system of

pulsed magnets (pingers) was required. Here the working principles of the magnet
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are described and the main working parameters of the pingers are derived. Finally

the first laboratory measurements are presented.

Chapter 5 covers the description of the experimental turn-by-turn set-up em-

ployed at ALBA and SOLEIL. Particular attention is devoted to the case of ALBA,

where turn-by-turn measurements have been implemented for the first time. The

description cover the set-up of the BPMs, the calibration of the pinger magnets

and the set-up of the storage rings lattice.

The first results of the linear lattice measurements from turn-by-turn data are

presented in Chapter 6, covering tune, betatron amplitude and phase measurements

and a comparison with the nominal lattice models. Furthermore an analysis of the

measurment errors is carried out.

In Chapter 7, the measurement technique introduced in Chapter 6, has been

put under test by carrying out a series of experiments where known sources of gra-

dient error (quadrupolar error) have been introduced in the storage ring lattices,

therefore the results of the measurements have been compared against the expected

values. Moreover the test is extended to skew-quadrupoles and sextupoles in or-

der to demonstrate the capabilities of turn-by-turn measurements to characterize

coupling sources and non-linear lattice elements.

Finally in Chapter 8 the turn-by-turn technique is extended to the character-

ization of multiple transverse coupling impedance sources in the ALBA storage

ring.



CHAPTER 1

Transverse beam dynamics in a storage ring

1.1. Transverse linear optics

1.1.1. Basic storage ring design

Storing and confining in space a beam of high energy charged particles is one

of the main and most complex tasks that has to be performed by a circular particle

accelerator.

Magnetic and electric fields are the tools at our disposal to displace electric

charges. Unfortunately electric fields get quickly non effective when high energy

particles are involved, requiring excessively high field strength in order to bend

noticeably their trajectory. A magnetic field as the one produced by a conventional

iron-core magnet is instead an effective tool to manipulate high energy particles.

As a first attempt we can try to confine a particle by means of a simple constant

and uniform magnetic field orthogonal to the direction of motion of the particle

itself. The same way as a stone tied at the end of a string is whirled around on

a circle, the particle would move around in a circular orbit under the effect of the

Lorentz force.

e-

N

S

Figure 1.1. An electron surrounded by a magnetic field and mov-
ing perpendicularly to the field lines is trapped on a circular path
as a result of the Lorentz force.

9



10 1. TRANSVERSE BEAM DYNAMICS IN A STORAGE RING

This is the very fundamental principle behind storage rings, where magnetic

fields are used to ”trap” charged particles on a closed path. The magnetic field

responsible for bending the particles is provided by many dipolar magnets (bending

magnets), as shown in Fig. 1.2 and the resulting design orbit consists of a sequence

of arcs, corresponding to the dipole magnets which bend the particle trajectory,

and straight sections.

Figure 1.2. A rudimentary storage ring made of bending mag-
nets only. Instead of using one huge magnet to produce the field
required to bend the particle trajectory many smaller magnets pro-
vides a viable solution.

The presence of empty straight sections provides useful space required to host

many other necessary devices vital to the accelerator.

Unluckily our rudimentary design would not be free of shortcomings. For in-

stance, the ”trapping” would be achieved only for a particle moving perpendicularly

to the field, whereas a trajectory non perpendicular to the field would produce a

helical orbit rather than a closed orbit and therefore an unbound motion. What

is missing to achieve an effective confined particle motion is a restoring force (fo-

cusing) that deflects the particle toward the design orbit each time they try to

escape. In other words, the reference orbit has to become an equilibrium curve for

the particles.

To help the following discussion we need to define a reference frame. It is a

common choice to define a transverse frame moving along the path of an imaginary
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particle on the design orbit as shown in Fig. 1.3, where s represents the longitudinal

position along the ring, while x and y denote the transverse displacements with

respect to the reference orbit.

y

x
s

Figure 1.3. Coordinates are defined in a reference frame comov-
ing with an ideal particle traveling exactly on the design orbit.

The focusing can be achieved by introducing a proper transverse gradient in the

magnetic field. Quadrupole magnets are the choice of reference when a linear mag-

netic field gradient is required. Figure 1.4 shows how the four poles of a quadrupole

magnet are arranged in such a way that the magnetic field vanishes at the center of

the magnet and increases linearly when moving away from it. In analogy with the

N S

S N

Figure 1.4. Transverse cross section of a quadrupole magnet. In
a quadrupole four magnetic poles are arranged in such a way to
produce a linear magnetic gradient that vanishes on its center. The
pole tips are shaped to ensure a good linearity of the field in a large
region of space. Black arrows shows the magnetic field, while red
ones represent the Lorentz force for a negative particle traveling
toward the image plane.

case of optical lenses, a particle crossing the quadrupole travels unaffected when
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passing through the center of the magnet while experiences a transverse force that

increases linearly moving away from the center as shown in Fig. 1.5.

Figure 1.5. Particles crossing the center of the quadrupole travel
unaffected while are deflected when passing off axis. As in a lens
particles traveling on parallel trajectories cross the quadrupole and
get deflected toward a focal point.

An explicit expression of the magnetic field produced in the transverse plane

by a quadrupole magnet is:

(1.1)















By = Gx

Bx = −Gy,

where, exploiting Maxwell’s equations and the particular symmetry of the field,

the two components have been written through the field gradient G =
∂By

∂x

∣

∣

0
.

A common way to provide the strength of a quadrupole magnet is through the

normalized gradient K defined as:

(1.2) K = G
e

pc
,

with e and p respectively the charge and momentum of the particles and c the speed

of light.

It is important to note that such magnetic field arrangement is not able to

focus the particle trajectory in the vertical and horizontal planes at the same time.

Focusing the beam in the horizontal plane induces a defocusing effect in the vertical

plane and vice versa. Nevertheless, it is possible to combine alternating focusing

and defocusing quadrupoles with suitable strength and distance in order to obtain

an overall focusing effect on both planes [18].
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Figure 1.6. Quadrupoles are placed in between dipoles to over-
come the lack of focusing of the previous design. Since a single
quadrupole is not able to achieve focusing on both planes at the
same time, horizontal focusing quadrupoles (in red) are alternated
with vertical focusing quadrupoles (in blue) to obtain an overall
focusing effect on both planes. The contribution of quadrupoles
defines the periodicity of the magnetic lattice, now made of 4 iden-
tical cells each one comprising two bending magnets, one focusing
and one defocusing quadrupole.

We proceed by adding very naively to our machine a few quadrupoles in the

free space left in between the bending magnets bringing our accelerator a bit closer

to what a real storage ring looks like. Of course such simplified approach if far away

from reality, in fact since the overall beam characteristics are mainly determined by

the magnets arrangement, commonly referred as the magnetic lattice, a complex

lattice design process is always involved in order to meet the required performances.

Leaving aside the difficulty of the lattice design process itself, that represents

a very complex topic by its own, we proceed with an introduction to the principles

of the transverse dynamic of the particles confined in the storage ring.

The understanding of the transverse particle motion in a storage ring requires

the study of the interaction of the particle with the different components of the

magnetic lattice, that in our simplified design is made of a combination of three
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different linear elements: bending magnets, focusing and defocusing quadrupoles

magnets and empty space in between.

1.1.2. Betatron oscillations

A stored particle follows a similar dynamics in the vertical and horizontal planes

defined by the Hill’s equation [48]:

(1.3)
d2u(s)

ds2
±K(s)u(s) = 0,

where u(s) is the particle coordinate in the vertical or the horizontal plane and

the s-dependent function K(s) represents the focusing and defocusing quadrupole

strength which shows opposite sign in the horizontal and vertical planes, reflecting

the signs of Eq. 1.1

Since quadrupoles fill only a portion of the storage ring, the function K(s)

behaves as a step function that vanishes everywhere except across quadrupoles.

There is a strict similarity between the Hill’s equation and a generalized har-

monic oscillator, the only difference being that the force K(s) is not constant in

time but varies continuously between different values including also negative ones.

Therefore we expect a stored particle to move following an almost harmonic motion

with a time constant that changes from time to time according to the quadrupole

being crossed, while drifting when passing trough a straight section or a bending

magnet where no magnetic field gradient is present.

The Hill’s equation belongs to the class of the second-order linear ordinary dif-

ferential equations with the peculiarity of K(s) being a periodic function, whose

period C equals to the circumference of the storage ring, therefore satisfying the

condition K(s) = K(s+C). In fact a particle stored in the ring after having com-

pleted one turn will experience the same lattice as the turn before. In other words

the interaction between a particle and the fields produced by the storage ring lattice

is intrinsically periodic with a periodicity set by the storage ring circumference (or

a higher periodicity in the very common case of a periodic magnetic lattice).

Being K(s) a step-like continuous periodic function we can solve Eq 1.3 using

the Floquet theorem. This states that the solution of such equation, if it exists,

can be decomposed as the product of a real function with the same periodicity of
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K(s) times an oscillatory term. Therefore we look for a solution of the form:

(1.4) u(s) = Aw(s) cos(ψ(s) + ψ0),

where the envelope function w(s) satisfies the periodicity condition w(s) = w(s +

C) and the phase ψ(s) is a s-dependent function. The two constants A and ψ0

are defined by the initial condition of the motion and account for the oscillation

amplitude and the initial phase, respectively.

To find an explicit solution for Eq. 1.3 we proceed by derivating Eq. 1.4 two

times with respect to the longitudinal position s:

(1.5) u′′ = A(w′′ − wψ′2) cos(ψ + ψ0)−A(2w′ψ′ + wψ′′) sin(ψ + ψ0),

where we dropped the function argument s to ease the notation. Substituting Eq.

1.4 and 1.28 in Eq. 1.3 and separating the phase and quadrature parts we obtain

a system of two equations:

(1.6a)

(1.6b)







w′′ − wψ′2 + kw = 0

2w′ψ′ + wψ′′ = 0.

Eq. 1.6b establishes a relation between the phase function ψ(s) and the amplitude

function w(s) and integrating one time with respect to s we get:

(1.7) ψ′(s) =
1

w2(s)
,

and hence

(1.8) ψ(s) = ψ(s0) +

∫ s

s0

1

w2(s′)
ds′.

To determine w(s) we substitute Eq. 1.7 into Eq. 1.6a resulting in a new

equation that now depends only on w(s) and the function K(s):

(1.9) w′′(s) +K(s)w(s) =
1

w3(s)
.

While solving directly Eq. 1.9 is possible, it is preferable to follow a slightly

different approach.
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Given two locations in the storage ring s1 and s2 the coordinates of a particle

at location s2 can be expressed as a function of the coordinate at s1 using Eq. 1.4

by the transformation:

u2 =

[

w2

w1
cos(∆ψ)− w2w

′
1 sin(∆ψ)

]

u1 + w1w2 sin(∆ψ)u
′
1,

u′2 =

[

−1 + w1w
′
2w2w

′
2

w1w2
sin(∆ψ)− (

w′
1

w2
− w′

2

w1
) cos(∆ψ)

]

u1+

[

w1

w2
cos(∆ψ) + w1w

′
2 sin(∆ψ)

]

u′1,

(1.10)

where ∆ψ = ψ(s2) − ψ(s1) is the phase advance between s1 and s2. The above

system is conveniently represented in matrix form by:

(1.11) ~u2 =M(s1 → s2)~u1,

where we introduced the particle coordinate vector ~u defined as:

(1.12) ~u(s) =







u(s)

u′(s)






,

and the matrixM(s1 → s2), commonly referred to as the transfer matrix, is defined

by:

M(s1 → s2) =(1.13)













w1

w2
cos(∆ψ)− w2w

′
1 sin(∆ψ) w1w2 sin(∆ψ)







(
w′

2

w1
− w′

1

w2
) cos(∆ψ)+

− 1+w1w2w
′

1w
′

2

w1w2
sin(∆ψ)







w1

w2
cos(∆ψ) + w1w

′
2 sin(∆ψ)













.

The ability to represent coordinates transformations with a matrix formalism proves

to be a particularly convenient tool to study linear optics. In fact once defined the

transfer matrix for each single element in the storage ring (i.e. straight sections and

quadrupoles), finding the transfer matrix between two arbitrary locations is only

matter of concatenating all the transformations representing the elements contained

in between:

(1.14) M(s1 → sN ) =MN ·MN−1 · ... ·M2 ·M1.
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The one-turn transfer matrix is of particular interest. In this case the two

locations s1 and s2 coincide and the matrix M(s) represents the coordinate trans-

formation for a particle that starting from a given location s = s1 = s2 completes

one turn around the storage ring. In this case the matrix M = M(s1 → s2)

simplifies and can be represented by the matrix:

(1.15) M(s) =







cos(ν) + α sin(ν) β sin(ν)

−γ sin(ν) cos(ν)− α sin(ν)






,

where β, α and γ are the Courant-Snyder parameters defined as 1:

β(s) ≡ w2(s),

α(s) ≡ −1

2
β′(s),

γ(s) ≡ 1 + α2(s)

β(s)
,

(1.16)

and ν represents the overall phase advance of the storage ring, commonly known

as the tune 2:

(1.17) ν = 2π

∫ C

0

1

w2(s)
ds.

The one turn matrix at any position s, M(s), is obtained explicitly by mul-

tiplying the transfer matrix of each element in the ring and from Eq. 1.16 it is

possible to derive the value of the functions β(s), α(s) and γ(s) (and therefore also

w(s) and w′(s)) all around the ring:

β(s) =
M12(s)

sin(ν)
,

α(s) =
M11(s)−M22(s)

sin(ν)
,

γ(s) = −M21(s)

sin(ν)
.

(1.18)

1According to the definition of the Courant-Snyder parameters, Eq. 1.4 turns into:

u(s) =
√

β(s)J cos(ψ(s) + ψ0), where the parameter J = A2 is the action, and takes into ac-

count for the excitation strength.
2 A more common definition of the tune is:

ν =

∫

C

0

1

w2(s)
ds.

But in this case we prefer to include the factor 2π in the tune definition in order to simplify the
notation
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The last step consists in providing the transfer matrices for straight sections and

quadrupoles. These are obtained by integrating Eq. 1.3 for a constant value of K.

For a straight section (K = 0) of length l the transfer matrix assumes the simple

form:

(1.19) M =







1 l

0 1






;

which, represents the drifting motion of a free particle.

Instead in the case of a quadrupole K 6= 0 of length l, a different solution is

found depending on the sign of K:

(1.20) M =























































cos(
√
Kl) 1√

K
sin(

√
Kl)

−
√
K sin(

√
Kl) cos(

√
Kl)









if K > 0









cosh(
√

|K|l) 1√
|K|

sinh(
√

|K|l)
√

|K| sinh(
√

|K|l) cosh(
√

|K|l)









if K < 0.

A simplified formula is obtained in the case l << 1√
|K|

(thin lens approximation),

in such condition Eq. 1.20 is conventionally approximated as:

(1.21) M =







1 0

−1/f 1






,

where the focal length f is:

(1.22) f =
1

Kl
.

Figure 1.7 shows an example of the horizontal and vertical beta for the very

simple ring introduced in Fig. 1.2, obtained by evaluating Eq. 1.18 along the ring.

It is clear how the betatron function reflects the same periodicity of the magnetic

lattice as imposed by the Floquet theorem.

The transverse motion of a particle along s is not periodic (Fig. 1.8a). However,

the envelope of the trajectories over many turns follows exactly the betatron func-

tion. Furthermore, observing turn after turn the particle transverse motion at one
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Figure 1.7. An example of the horizontal and vertical betatron
functions for the simple storage ring introduced in the previous sec-
tion. Bending magnets are depicted as black rectangles, while red
and blue rectangles represent focusing and defocusing quadrupoles
respectively.

fixed location of the ring exhibits a perfectly harmonic progression (see Fig. 1.8b)

with a frequency equal to the machine tune ν as expected from Eq. 1.4

1.2. Transverse non-linear optics and errors

1.2.1. Chromatic aberrations and correction

So far we have limited the design of a storage ring to bending magnets and

quadrupoles only. The previous analysis was carried out under the assumption of a

well defined particle energy, but if we repeat the linear motion analysis for different

particle energies we observe two phenomena:

• Orbit dispersion (Fig. 1.9a): an off energy particle is bent by bending

magnets with a different radius, therefore it will describe a different hori-

zontal orbit known as dispersive orbit.
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(a) A particle stored in the ring of Fig. 1.6 is kicked horizontally away from the reference
orbit. The resulting betatron motion is followed for 8 consecutive turns. Even tough
the particle motion does not reflect the periodicity of the magnetic lattice, the trajectory
envelope does so and more precisely is proportional to the square root of the betatron
function βx(s).
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(b) The position of the same particle is now observed at one single location (shown as a
black line in the previous picture) for 50 turns. The observed motion is a pure sinusoid
with a frequency defined by the betatron tune, νx = 2π · 1.095 in this example.

Figure 1.8
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(a)

(b)

Figure 1.9. Magnetic fields get less effective in bending trajec-
tory when dealing with higher energy particles. This leads to:
a) spectrometer effect when particles with different energy travel
across a dipole. b) A chromatic aberration in the case of a
quadrupole.

• Chromaticity (Fig. 1.9b): an off energy particle is focused by quadrupole

magnets with a different strength resulting in a shift of the betatron tune:

(1.23) δν =
δν

δp
δp =

δν

δp/p

δp

p
= ν′

δp

p

where δp
p represents the relative energy variation and ν′ is the chromatic-

ity.

While the first issue does not really affect the ability of the storage ring to store

particles, the second one represents an important limiting factor and needs to be

addressed.

To correct the natural chromaticity, i.e. the chromaticity produced only by the

quadrupoles, we need to introduce in the magnetic lattice new elements. The strat-

egy consists in taking advantage of the energy sorting produced in the transverse

plane by the dispersion: particles with different energies lay on different orbits. By
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introducing in a location of high dispersion a focusing element whose strength de-

pends on the particle transverse position, it is possible to compensate the different

focusing of the quadrupoles.

N

NN

S S

S

Figure 1.10. Transverse cross section of a sextupole magnet. In a
sextupole six magnetic poles are arranged in such a way to produce
a second order magnetic gradient.

Sextupolar magnets, as the one sketched in Fig. 1.10, produce a field of the

kind [47]:

(1.24)















Bx = 2Sxy

By = S(x2 − y2),

with S defined as:

(1.25) S =
1

2

∂2By
∂x2

∣

∣

∣

0
.

The quadratic term Sx2 of Eq. 1.24 results in a focusing or defocusing ef-

fect whose strength varies linearly with the transverse position, therefore making

the sextupole a solution for chromatic correction. Figure 1.11 shows how a sex-

tupole strategically placed in a location of high dispersion, allows to compensate

the chromatic aberration produced by a close quadrupole.

Such approach is used in storage rings where sextupoles placed at locations of

high dispersion correct the chromatic aberrations. On the other hand the presence

of sextupoles in the magnetic lattice introduces also a new class of problems. First
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Figure 1.11. Schematics of a sextupole (green lens) is placed
in a location of high dispersion to compensate for the chromatic
aberration produced by a close quadrupole (yellow lens).

of all the equation of motion (Eq. 1.3) becomes non-linear. To further complicate

things, the magnetic field from Eq. 1.24 couples the motion in the horizontal and

vertical planes: from now on we are not allowed anymore to treat the two planes

as two separated problems. Since it is not possible to derive an exact solution for

the transverse motion approximated solutions are then to be inferred.

1.2.2. Perturbation Theory

In this chapter we introduce the transverse beam dynamics in the presence of

non-linear forces and forces that couple the vertical and horizontal motion turning

the simple Hill’s equation (Eq. 1.3) in a rather complicated system of two coupled

non-linear differential equations whose analytic solution is not available.

In fact it is common for such systems to exhibit a chaotic behavior whenever

the non-linear contributions grows above a certain threshold, that is the case of

particles moving far away from the magnet axis and therefore experiencing strong

non-linear forces as the ones produced by sextupoles. Conversely a regular motion

is still observed for particles moving close to the magnet axis, where the non-linear

components of the fields vanish quickly. In this last case a perturbative approach

is an effective way to study the beam dynamics providing an approximated and

simple analytical expression for the particle motion.

After having introduced a generic perturbative term fx,y(x(s), y(s), s) that

takes into account non-linear and coupling forces, the equation of motion turns



24 1. TRANSVERSE BEAM DYNAMICS IN A STORAGE RING

into:

(1.26)











x′′(s) +K(s)x(s) = fx(x(s), y(s), s)

y′′(s)−K(s)y(s) = fy(y(s), x(s), s).

The new non-linear force term can be expressed in a general way with a poly-

nomial expansion of the form:

(1.27) f(x(s), y(s)) =
∑

m,n

xm(s)yn(s) · Pm,n(s),

where the longitudinal position dependent function Pm,n(s) represents the non-

linear perturbation distribution around the storage ring which, similarly to the

function K, has a periodicity defined by the storage ring length. At small am-

plitude fx and fy vanish smoothly, therefore we expect Eq. 1.4 to provide still

a good approximation of the transverse motion. We call this solution zero order

approximation and we identify it with the subscript 0:

(1.28)











x0(s) =
√

βx(s)Jx cos(ψx(s))

y0(s) =
√

βy(s)Jy cos(ψy(s)).

Starting from the zero order approximation we proceed to include the contribution

of fx and fy by means of a perturbative approach. Whenever x, y → 0, we can

replace x(s) and y(s) with x0(s) and y0(s) when evaluating the terms fx and fy

committing a small error.

(1.29)











x′′1(s) +K(s)x1(s) = fx(x0(s), y0(s), s)

y′′1 (s)−K(s)y1(s) = fy(x0(s), y0(s), s).

The solution of the system of equations 1.29 is called first-order approximation.

By evaluating fx and fy in the zero order solution we obtain two major effects:

the non-linearity in the unknown variables x and y is removed along with cou-

pling. Therefore the problem has been reduced to solving a much simpler couple of

inhomogeneous linear differential equations. Once removed the coupling between

vertical and horizontal planes we can switch back to consider one single general

equation that applies for both planes and only at the end specialize the solution for
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the two different cases 3:

(1.30) u′′1(s) +K(s)u1(s) = f(u0(s), s).

So far the particle motion has been studied in terms of the longitudinal variable s, on

the other hand the beam experimental observations are carried out at fixed positions

around the storage ring, where beam position monitors (BPMs) are located. Hence

it is helpful to introduce a different notation, where the particle position is identified

by the variable r ∈ [0, C] and the turn number is explicitly introduced by the

variable n, such that s = r + nC.

If multiple sources of error are present, the perturbation term becomes quickly

complicated. To simplify our task the superposition principle comes in handy: in

fact we can solve Eq. 1.30 for a single delta shaped error source, thereafter obtain

the complete solution by performing a convolution over the full distribution of

errors.

Because of the periodicity imposed by the storage ring, a single delta shaped

perturbation is perceived by a particle as a Dirac comb (denoted by the symbol

IIIC): every time the particle completes a turn and travels through the perturbation

it undergoes a kick. Therefore the perturbation term turns into:

(1.31) fIIIC (r, rp, n) =
+∞
∑

n=0

δ(r − rp)u
m
0 (r + nC),

where rp represents the longitudinal position of the perturbation and the exponent

m the perturbation order (1 for quadrupoles, 2 for sextupoles, etc.).

Starting the summation at zero instead of −∞ might seem wrong at first sight.

In fact the perturbation is present all time in the storage ring, while Eq. 1.31

represents a perturbation that affects the beam only after turn 0. Such a choice

is made to reproduce the experimental condition under which the observations are

actually carried out. As will be made clearer in the chapters dedicated to turn-by-

turn measurements, the observation of the beam dynamics is only possible as long

as a whole bunch of particles moves coherently behaving effectively as one single

3Here a simplified notation is used to indicate the perturbing function f() that, instead of depend-
ing on both the transverse coordinates it is represented as a function of a single generic coordinate

u0(s). Nevertheless the following discussion is still valid provided that the proper coordinates are
substituted when evaluating f().
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macro-particle. This condition is experimentally obtained by abruptly displacing

on the transverse plane ”kicking” a bunch initially on axis and observing how it

relaxes while undergoing betatron motion. Since before the excitation the bunch

moves on the equilibrium orbit, where the perturbation vanishes, it is correct to

assume that no perturbation is present before the bunch gets kicked at turn 0 and

moved away from the reference orbit.

To find the solution uIIIC associated to the perturbation fIIIC we exploit a

second time the superposition principle. Following the Green’s function method we

solve Eq. 1.30 for a non-periodic single delta perturbation located at rp:

(1.32) u′′δ (r, rp, n) +K(s)uδ(r, rp, n) = δ(r − rp + nC).

Therefore uIIIC is obtained by adding up the series:

(1.33) uIIIC (r, rp, n) =

∞
∑

t=0

uδ(r, rp, n− t) · um0 (rp + tC).

The dynamics described by Eq. 1.32 is essentially the one of a particle at

rest until it crosses rp where the δ perturbation is located, thereafter undergoes a

free betatron motion. An explicit expression for uδ is obtained by modifying the

solution previously found for the homogeneous Hill’s equation 4 1.28 as follows:

(1.34) uδ(r, rp, n) = θ(r − rp + nC)
√

β(r)β(rp) sin(ψ(r + nC)− ψ(rp)),

where the Heaviside function θ(r) is defined as:

(1.35) θ(r) =

∫ r

−∞
δ(r′)dr′.

Now that a solution for uδ was found, the last remaining step is adding the

series in Eq. 1.33. For this purpose we need to introduce explicitly the term um0 .

Being such a term dependent on the kind of perturbation, we have to specialize the

solution for each different kind of perturbation.

A sketch of the process of adding up the series in order to build the solution is

shown in Fig. 1.12. According to Eq. 1.33 the effect of the perturbation is assessed

4Note that here the cosine from Eq. 1.28 has been turned into a sinus to match the excitation

condition, that has been changed from a transverse displacement, as used in the previous section,
to a transverse kick (trajectory angle).
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Figure 1.12. The overall motion (blue) excited by a perturbation
is decomposed in series. Each term (green curves) represents the
betatron motion induced by the beam crossing the perturbation
at one specific turn. The strength of each excitation (green dots)
depends on the beam coordinate um0 (rp + nC) (red) and therefore
varies at each turn. Since before turn 0 the beam is unexcited
and sits on the equilibrium orbit there is no need to include in the
series any term before turn 0 being identically zero. This condition
reflects well the experimental observation where the relaxed beam
get abruptly excited by a fast pulsed magnet in less than one turn,
thence the system is left to relax again.

by following the particle turn after turn and at each turn including the contribution

of the interaction with the perturbation in the form of a free betatron oscillation.

In the next paragraphs we will analyze two different cases: rotated quadrupoles,

known as skew quadrupoles, that couple the horizontal and vertical motion, and

sextupoles.

1.2.3. Skew Quadrupoles

The force produced by a skew quadrupole on one plane is proportional to

the particle displacement in the other plane, therefore coupling the horizontal and

vertical motion. An explicit expression of the magnetic field produced by a skew
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quadrupole is:

(1.36)















By = Gy

Bx = −Gx,

with G = ∂Bx

∂x

∣

∣

0
.

For simplicity’s sake we solve the problem for the horizontal plane only, since

the effect is symmetrical the complementary solution for the vertical plane can be

subsequently derived by simply swapping the indexes x and y.

The horizontal motion is therefore obtained from Eq. 1.33 by replacing uδ with

xδ and substituting the zero order solution for the vertical motion in the place of

um:

xIIIC (r, rp, n) =

∞
∑

t=0

xδ(r, rp, n− t) · y0(rp + tC) =

∞
∑

t=0

θ(r + (n− t)C − rp)
√

βo
xβ

p
x sin(∆ψx + (n− t)νx)×

√

βp
yJy sin(ψ

p
y + tνy),

(1.37)

where ∆ψ = ψ(r) − ψ(rp) represents the phase advance between the observation

point r and the location of the perturbation rp. The superscripts o and p identify

respectively a variable evaluated at the observation point r or at the location of the

perturbation rp (such that βp
x = βx(rp) and β

o
x = βx(r)).

The operator θ(r) is removed by restricting the upper limit of the sum to n:

xIIIC (r, rp, n) =

n
∑

t=0

√

βo
xβ

p
xβ

p
yJy sin(∆ψx + (n− t)νx) · sin(ψp

y + tνy),(1.38)

that is rewritten as:

xIIIC (r, rp, n) =

√

βo
xβ

p
xβ

p
yJy

4

{[

e−inνxei(ψ
p
y−∆ψx)

n
∑

t=0

eit(νy+νx) + c.c.

]

−
[

einνxei(ψ
p
y+∆ψx)

n
∑

t=0

eit(νy−νx) + c.c.

]}

.

(1.39)
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The sum has been reduced to a geometric series, therefore we can proceed to

add up all the terms by means of the identity:

(1.40)

n
∑

t=0

eitν =
1− ei(n+1)ν

1− eiν
.

After some manipulation the horizontal beam motion xIIIC (r, rp, n) is decom-

posed as the sum of two modes:

(1.41) xIIIC (r, rp, n) = HIIIC (1, 0) + HIIIC (0, 1),

where, following the notation from [21], H(n, m) represents a horizontal mode with

frequency nνx +mνy. The two modes can be written as:

HIIIC (0, 1) =(1.42)

√

βo
xβ

p
xβo

yJy

4

[

ei(ψ
p
y+∆ψx)

e−i(νy−νx) − 1
− ei(ψ

p
y−∆ψx)

e−i(νy+νx) − 1

]

eiνyn + c.c.,

and

HIIIC (1, 0) =(1.43)

√

βo
xβ

p
xβo

yJy

4

[

e−i(ψ
p
y−∆ψx−νx−νy)

ei(νy+νx) − 1
−e

i(ψp
y+∆ψx+νx−νy)

ei(νx−νy) − 1

]

eiνxn + c.c..

While Eq. 1.41 provides the first-order correction to the horizontal betatron

motion due to the presence of a single delta shaped skew quadrupole, the overall

correction is obtained by integrating the skew quadrupole distribution P (rp) in the

storage ring:

(1.44) x(r, n) = H(1, 0) + H(0, 1) =

∫ C

0

xIIIC (r, rp, n)P (rp)drp.

In conclusion a pulsed excitation5 of the vertical betatron motion propagates to

the horizontal plane through skew quadrupoles, resulting in turn in the excitation

of the two horizontal modes: H(1,0) and H(0,1), whose amplitudes and phases

5 The presence of the mode H(1,0) is to be attributed to the intrinsically wide spectrum excitation

of the pinger magnet kick, where instead a ”slow” excitation process such as the one provided by

a radio frequency stripline, would strongly suppress the excitation of such mode. In the case of a

slow excitation the vertical betatron motion amplitude (action) grows over many turns, as shown
in the following figure:
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are functions of the observer position (BPM location) and the skew quadrupole

distribution.

From an experimental stand point, in order to obtain a clean picture of the

contribution of the skew quadrupoles to the spectral line H(1,0), any direct exci-

tation of the horizontal betatron motion has to be avoided. This condition is very

hard to meet, requiring an extremely good alignment of the pinger magnet used

to excite the vertical betatron motion. For this reason only the mode H(0,1) has

been taken into account in the experimental coupling characterization carried out

in Chapter 7.

Exploiting the symmetry of the problem, the analogous vertical motion correc-

tion is then obtained by swapping the x and y indexes:

(1.47) yIIIC (r, rp, n) = VIIIC (0, 1) + VIIIC (1, 0),

with:

VIIIC (1, 0) =(1.48)

√

βo
yβ

p
yβo

xJx

4

[

ei(ψ
p
x+∆ψy)

e−i(νx−νy) − 1
− ei(ψ

p
x−∆ψy)

e−i(νx+νy) − 1

]

eiνxn + c.c.,
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To take into account the slow excitation, Eq. 1.37 is modified by adding a ”lead in” term:

xIIIC (r, rp, n) =

−1
∑

t=−∞

at · xδ(r, rp, n− t) · y0(rp + tC)+

∞
∑

t=0

xδ(r, rp, n− t) · y0(rp + tC),

(1.45)

where the parameter a > 1 defines the betatron motion amplitude growth rate. The change is

propagated to the next equations and in order to compute the new term in the series we use the

identity:

(1.46)

−1
∑

t=−∞

(aeiν)t = lim
n→−∞

(aeiν)n − 1

1− aeiν
=

−1

1− aeiν
.

By adding up the series we find that as the excitation time tends to infinity (a→ 1+), a complete
suppression of the mode H(1,0) is observed, while not affecting the mode H(0,1).
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and

VIIIC (0, 1) =(1.49)

√

βo
yβ

p
yβo

xJx

4

[

e−i(ψ
p
x−∆ψy−νy−νx)

ei(νx+νy) − 1
−e

i(ψp
x+∆ψy+νy−νx)

ei(νy−νx) − 1

]

eiνyn + c.c..

Not surprisingly, because of the symmetry of the problem, the results is anal-

ogous to what observed in the horizontal plane.

1.2.4. Sextupoles

The approach we follow for the sextupolar perturbation is no way different from

the skew quadrupole case, the only change we need to apply is in the definition of

the force. This time since the effect on the vertical and horizontal plane is different,

we need to deal with the two cases separately.

In the horizontal plane the perturbative force is proportional to x2−y2. There-

fore Eq. 1.33 turns into:

xIIIC (r, rp, n) =

∞
∑

t=0

xδ(r, rp, n− t) ·
[

x20(rp + tC)− y20(rp + tC)
]

=

∞
∑

t=0

θ(r + (n− t)C − rp)
√

βo
xβ

p
x sin(∆ψx + (n− t)νx)

[

βp
xJx sin

2(ψp
x + tνx)− βp

yJy sin
2(ψp

y + tνy)
]

,

(1.50)

where the same notation as in the case of the skew quadrupole applies. Rewriting

the squared sine terms by making use of the identity sin2(α) = 1
2 [1 − cos(2α)],

an expression very similar to the previous case of the skew quadrupole is obtained.

After adding up the series and performing some minor manipulation the correctrion

the horizontal beam motion is decomposed as the sum of four modes:

(1.51) xIIIC (r, rp, n) = HIIIC (2, 0) + HIIIC (0, 2) + HIIIC (1, 0) + HIIIC (0, 0),
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with:

HIIIC (0, 2) =(1.52)

βp
yJy

√

βo
xβ

p
x

8i
·
[

ei(2νy+νx−∆ψx+2ψp
y)

ei(2νy+νx) − 1
− ei(2νy−νx+∆ψx+2ψp

y)

ei(2νy−νx) − 1

]

e2iνyn − c.c.,

HIIIC (2, 0) =(1.53)

βp
xJx

√

βo
xβ

p
x

8i
·
[

ei(3νx−∆ψx+2ψp
x)

e3iνx − 1
− ei(νx+∆ψx+2ψp

x)

eiνx − 1

]

e2iνxn − c.c.,

HIIIC (1, 0) =(1.54)

βp
yJy

√

βo
xβ

p
x

8i
·
[

ei(∆ψx+2ψp
y)

ei(2νy−νx) − 1
+

ei(∆ψx−2ψp
y)

e−i(2νy+νx) − 1
− 2ei(∆ψx)

e−iνx − 1

]

eiνxn+

βp
xJx

√

βo
xβ

p
x

8i
·
[

ei(∆ψx+2ψp
x)

eiνx − 1
+
ei(∆ψx−2ψp

x)

e−3iνx − 1
− 2ei(∆ψx)

e−iνx − 1

]

eiνxn − c.c.,

and

HIIIC (0, 0) =(1.55)

βp
yJy

√

βo
xβ

p
x

4i
· e

i(∆ψx−νx)

e−iνx − 1
+
βp
xJx

√

βo
xβ

p
x

4i
· e

i(∆ψx−νx)

e−iνx − 1
− c.c..

The overall correction is then obtained by integrating over the sextupole dis-

tribution P (rp) in the storage ring:

x(r, n) = H(2, 0) + H(0, 2) + H(1, 0) + H(0, 0)

=

∫ C

0

xIIIC (r, rp, n)P (rp)drp.

(1.56)

Of the four modes, H(2,0) and H(0,2) have the well recognizable frequency of

two times the horizontal and two times the vertical tune respectively, providing

good candidates for experimental studies since they do not overlap with any other

line of the spectrum. H(1,0) instead will not be used for the same reason discussed

in the previous case about the skew quadrupole, while the zero frequency mode

(orbit offset) H(0,0) also will not be used because of limitations in the ALBA
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experimental setup that prevented to obtain a reliable orbit measurements when

acquiring turn-by-turn data.

The last missing step is to calculate the effect produced on the vertical plane.

In this case the force is proportional to two times the product of the horizontal and

vertical displacements 2xy, turning Eq. 1.33 into:

yIIIC (r, rp, n) =

∞
∑

t=0

θ(r + (n− t)C − rp)
√

βo
yβ

p
y sin(∆ψy + (n− t)νy)

2
√

βp
xJxβ

p
yJy sin(ψ

p
x) + tνx) sin(ψ

p
y ) + tνy).

(1.57)

Proceeding as before we find the following expression for the first-order correction

to the vertical betatron motion:

(1.58) yIIIC (r, rp, n) = VIIIC (1, 1) + VIIIC (1,−1) + VIIIC (0, 1),

with:

VIIIC (1, 1) =(1.59)

βp
y

√

βp
xβo

yJxJy

4i
eψ

p
x+ψ

p
y+νx ·

[

ei(2νy−∆ψy)

ei(νx+2νy) − 1
− ei∆ψy

eiνx − 1

]

· ei(νx+νy)n − c.c.

VIIIC (1,−1) =(1.60)

βp
y

√

βp
xβo

yJxJy

4i
eψ

p
x−ψp

y+νx ·
[

ei(∆ψy−2νy)

ei(νx−2νy) − 1
− e−i∆ψy

eiνx − 1

]

· ei(νx−νy)n − c.c.

VIIIC (0, 1) =
βp
y

√

βp
xβo

yJxJy

4i
·
[

ei(∆ψy+ψ
p
x+ψ

p
y)

eiνx − 1
+
ei(∆ψy−ψp

x−ψp
y)

e−i(νx+2νy) − 1
+(1.61)

− ei(∆ψy+ψ
p
x−ψp

y)

ei(νx−2νy) − 1
− ei(∆ψy−ψp

x+ψ
p
y)

e−iνx − 1

]

eiνyn.

Also this time we observe a behavior similar to the previous cases: the cor-

rection is composed by several terms some of which overlap with the betatron
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Table 1.1. Observables obtained by combining the spectral lines
relative to perturbations and the tune lines in order to remove the
dependency on the initial motion condition.

Skew quadrupole

Fxy = |Fxy|eiqFxy

{

|Fxy| = |H(0, 1)/[2|V (0, 1)|]
qFxy

= ψH(0,1) − ψV (0,1) − 3
2π

Fyx = |Fyx|eiqFyx

{

|Fyx| = |V (1, 0)/[2|H(1, 0)|]
qFyx

= ψV (1,0) − ψH(1,0) − 3
2π

Sextupole

FNS3 = |FNS3|eiqFNS3

{

|FNS3| = |H(−2, 0)/[4|H(1, 0)|2]
qFNS3

= ψH(−2,0) − ψH(1,0) +
3
2π

FNS2 = |FNS2|eiqFNS2

{

|FNS2| = |H(0,−2)/[4|H(0, 1)|2]
qFNS2

= ψH(0,−2) − ψH(0,1) +
3
2π

FNS1 = |FNS1|eiqFNS1

{

|FNS1| = |V (−1,−1)/[4|H(1, 0)||V (0, 1)|]
qFNS1

= ψV (−1,−1) + ψH(1,0) + ψV (0,1) − 3
2π

FNS0 = |FNS0|eiqFNS0

{

|FNS1| = |V (1,−1)/[4|H(1, 0)||V (0, 1)|]
qFNS1

= ψV (1,−1) − ψH(1,0) + ψV (0,1) − 3
2π

oscillation frequency, while the others have instead a frequency that is characteris-

tic of the field produced by a sextupolar magnet and can be used to characterize

the sextupoles in the magnetic lattice.

The previous analysis shows how the contribution of each non-linear lattice

element is associated to a perturbation of the betatron motion characterized by

a well defined resonance mode. Given a turn-by-turn observation of the beam

transverse motion in a storage ring, the uniqueness of such frequencies allows to

isolate and study the contribution of the different magnetic components. On the

other hand the perturbations depend not only on the lattice, but also on the initial

motion condition (excitation amplitude and initial phase 6). Following the approach

6In the previous calculation the betatron motion initial phase has been assumed to be ψ0 = 0
that coincides with exciting the beam at n = 0, r = 0. Whenever this condition is not met the

solution can be obtained by shifting the reference frame along s in order to restore the condition
ψ0 = 0. The overall effect on the solution is therefore a phase shift equal to ψ0.
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Figure 1.13. A small perturbation is located at Sp producing
some distortion of the storage ring optical functions everywhere
along the ring, including at So where an hypothetical observer is
located.

proposed in [21] we get rid of these unknown quantities by properly ”normalizing”

the spectral lines with respect to the tune lines, obtaining a new set of observable

quantities (Tab. 1.1). This technique requires to sample the linear betatron motion

through the observation of the tune lines H(1,0) and V(0,1), on the other hand, as

shown previously, such lines are affected in small part by the same skew quadrupoles

and sextupoles. However since the correction to those lines is always limited to a

negligible fraction (below 1‰ of the overall motion), it is safe to apply the method.

1.2.5. Small quadrupolar error

In the previous section a general procedure to evaluate the linear lattice pa-

rameters (i.e. β(s), α(s) and γ(s) functions) in a storage ring was provided. Such

procedure required a rather intricate integration process where the effect of every

single optical element was concatenated. On the other hand one of the most com-

mon and important issue in storage ring is represented by the presence of gradient

errors, that could arise either from gradient errors produced by quadrupole mag-

nets, i.e. mechanical errors or power supply inaccuracy, or as the result of more

subtle effects as in the case of electromagnetic interaction between the beam and the

metallic vacuum chamber (a more detailed description of this phenomenum will be

presented in Chapter 8). Therefore in this section we aim at finding a simple way to

estimate the optical distortion produced by a generic small gradient perturbation,

avoiding the complete and time consuming calculation of the optical functions.
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Figure 1.13 outlines the case under study: a single small perturbation is located

in the storage ring at position sp producing an alteration of the optical functions at

the position so where an hypothetical observer is placed. Being small, the perturba-

tion is accurately represented by the thin lens approximation provided by Eq. 1.21.

If M(o → p) and M(p → o) represent the transfer matrices from the observer to

the perturbation location and from the perturbation location to the observer, we

can write the overall one turn matrix in presence of the perturbation as:

(1.62) M̄ =M(p → o)MeM(o → p),

whereMp is the transfer matrix of the thin lens approximation of the perturbation.

Exploiting relations in Eq. 1.18 it is now possible to calculate the new values of

the optical functions. Among them, a quantity of great interest is the relative vari-

ation of the β(s) function, usually referred as the β-beating, that can be calculated

from the matrix element M̄12:

(1.63) M̄12 = −Klβpβo sin(ψp − ψo) sin(ν + ψo − ψp) + βo sin(ψo),

where K and l represent respectively the strength and length of the perturbation

and the tune ν has been approximated with the tune ν of the lattice free of pertur-

bations.

Substituting Eq. 1.63 in Eq. 1.18 provides an expression of the β-beat produced

by a single small gradient error:

(1.64)
∆βo
βo

= −Klβp cos(ν0 + ψo − ψp)

2 sin(ν0)
.

The tune shift is obtained by operating in a similar way, this time the new one

turn transfer matrix is written as:

(1.65) M̄ =MMp,

where the matrix M represents the unperturbed one turn transfer matrix. Using

Eq. 1.15 the tune is written as:

(1.66) cos(ν̄) = M̄11 + M̄22.
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Therefore the tune variation ∆ν is obtained:

(1.67) ∆ν ≃ cos(ν̄)− cos(ν) = −1

2
βpKl.

Figure 1.14. A small perturbation is located at Sp distorting the
phase advance between the positions a and b. In this particular
case the perturbation not located between the two points, the spe-
cial case of an error included in between the two considered points
needs to be treated separately.

A similar approach applies also to the calculation of the phase-advance change

(”phase-beat”) between two locations. A schematic view of the problem is given

in Fig. 1.14. For an unperturbed ring the transfer matrix element M12(a → b)

between two generic points a and b, is:

(1.68) M12(a → b) =
√

βaβb sin(ψb − ψa).

Since the transfer matrix is defined only by the elements in between the points

a and b, the matrix element M12 will be equal to the perturbed transfer matrix

element M̄12, except where the perturbation is located in between the two points

(such a case will be covered separately). Expanding the condition M12 = M̄12 with

Eq. 1.68 yields:

sin(ψ̄b − ψ̄a) =

√
βaβb

√

β̄aβ̄b
sin(ψb − ψp) =

√
βaβb

√

(βa +∆βa)(βb +∆βb)
sin(ψb − ψa),

(1.69)

where the perturbed β values have been expanded as the unperturbed ones plus

a small variation according to the previous definition of beta-beating. Neglecting

the second order term ∆βa∆βb and expanding in a Taylor series truncated to the
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first-order yields:

sin(ψ̄b − ψ̄a)− sin(ψb − ψa) = −1

2

(

∆βa
βa

+
∆βb
βb

)

sin(ψb − ψa).(1.70)

Finally, expanding up to the first-order the left hand side and after some minor

manipulations, an expression for the phase-beat (∆ψb − ∆ψa) in the case of a

perturbation not included in between the two points a and b is obtained:

(1.71) (∆ψb −∆ψa)
p/∈[a,b] = −1

2

(

∆βa
βa

+
∆βb
βb

)

tan(ψb − ψa),

where the beta-beat ∆βa

βa
and ∆βb

βb
can be evaluated from Eq. 1.64.

The previous approach holds also in the case of a perturbation located in be-

tween the two positions a and b with the exception that now we need to include

the additional phase advance ψp provided by the perturbation itself:

(1.72) (∆ψb −∆ψa)
p∈[a,b] = (∆ψb −∆ψa)

p/∈[a,b] + ψp.

To evaluate ψp it is useful to consider the limit case of a=0 and b=L, where the

whole storage ring except the perturbation is included in between. Since the phase-

advance of the whole ring is by definition the tune, the observed phase-beat coin-

cides with the overall tune-shift ∆ν from Eq. 1.67. Therefore ψp is written as:

(1.73) ψp = ∆ν − (∆ψL −∆ψ0)
p/∈[0,L],

that can be evaluated by means of Eq. 1.71 providing:

(1.74) ψp = ∆ν − 2∆ν = −∆ν.

In presence of multiple perturbation sources, or sources with finite length it is

possible to estimate the cumulative effect by integrating the previous expressions

for the beta-beat, tune-shift and phase-beat over the perturbation distribution:

(1.75)
∆βo
βo

= − 1

2 sin(ν0)

∫ C

0

β(s)K(s) cos(ν0 + ψo − ψp)ds,

(1.76) ∆ν ≃ −1

2

∫ C

0

β(s)K(s)ds,
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(1.77)

∆ψb −∆ψa =















− 1
2

∫ C

0

(

∆βa

βa
+ ∆βb

βb

)

tan(ψb − ψa)K(s)ds if sp /∈ [sa, sb]

− 1
2

∫ C

0

(

∆βa

βa
+ ∆βb

βb

)

tan(ψb − ψa)K(s)ds−∆ν if sp ∈ [sa, sb].

Despite the carefully construction, calibration and alignment of magnets, the

tight requirements over the lattice parameters necessary to operate a third gen-

eration light source can be hardly met without a beam based measurement and

correction process, where the properties of the stored beam are measured and used

to extrapolate and correct the optics parameters. The ability to quickly and pre-

cisely measure the lattice parameters represents therefore a key tool in this context.

In the next chapters we will show how turn-by-turn beam position measurements

can be used to extrapolate the parameters described by the theory introduced in

this chapter.





CHAPTER 2

The ALBA and SOLEIL storage ring lattices

In the previous chapter the basics of the transverse beam dynamics of a storage

ring has been covered introduced. Here the lattices of the two cases under study,

ALBA and SOLEIL, are described specifically.

In the next sections an overview of the optics of the two machines is presented

focusing mainly on the ALBA storage ring, where most of the work has been carried

out.

Furthermore the ALBA lattice is used as a bench test to carry out a comparison

between the first-order approximated analytical formulas introduced in the previ-

ous chapter and a numerical simulation (tracking) obtained with the accelerator

simulation AT [43], a well proven simulation code largely used to study the beam

dynamics in synchrotrons.

2.1. Storage rings lattice design

The ALBA and SOLEIL storage rings share many characteristics, especially

regarding the design of the lattice. Here follows a description of the two lattices.

2.1.1. The ALBA storage ring lattice

A summary of the main lattice and machine parameters for the ALBA storage

ring is provided in Tab. 2.1.

The magnetic lattice employed by the ALBA storage ring [19, 34] has a four-

fold symmetry, where each of the four quadrants is composed by four cells: two

”unit cells” embedded in two ”matching cells” (see Fig. 2.2, 2.3 and 2.4).

Empty straight sections, characterized by small values of beta functions and

dispersion, are provided in between the cells in order to host insertion devices. The

small transverse beam size at these locations ensures the emission of synchrotron

radiation from a well defined source point, condition required by the experimental

41
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Table 2.1. ALBA storage rings lattice operation parameters (2015).

Circumference 268.8m
Energy 3.0GeV
Emittance 4.6 nm
Qx 18.155
QY 8.362
Natural ξx -40
Natural ξy -27
Corrected ξx +2
Corrected ξy +4
βx / βy at medium straight sec-
tions

2.0m / 1.2m

Table 2.2. r.m.s. variation for alignment and magnetic errors in
the ALBA storage ring. Magnets are bolted onto girders, ensuring
a small alignment error between magnets sharing the same girder
while a worst girder-to-girder accuracy is observed.

Parameter r.m.s. variation

Girder-to-Girder σx 150 µm
Girder-to-Girder σy 150 µm
Girder-to-Girder σφ 50 µm
Magnet-to-Magnet σx 25 µm
Magnet-to-Magnet σy 25 µm
Magnet-to-Magnet σφ 50 µm
Dipole field 0.1%
Quadrupole field 0.1%

beam-lines. Four long straight sections with a high value of beta functions are

instead provided in between the quadrants, one of which hosts the injection section.

Each cell contains several magnets arranged in a double-bend achromat (DBA)

configuration, where two dipoles are arranged with quadrupoles in order to keep

under control the value of the dispersion in the straight sections. A sample of the

magnets used in the ALBA storage ring is visible in Fig. 2.1.

The dipoles include a transverse defocusing gradient [20]. This results in a very

compact layout and a lower transverse emittance at expense of a reduced flexibility,

since the combined gradient can not be varied.

The design specification for the magnet alignment and magnetic errors are

reported in Tab. 2.2. The optics change due to the magnetic and alignment errors

are routinely corrected with beam-based techniques.



2.1. STORAGE RINGS LATTICE DESIGN 43

(a)

(b) (c)

Figure 2.1. The three main components of the ALBA magnetic
lattice: Combined-function dipoles (A), quadrupoles (B), Sex-
tupoles (C). Sextupoles magnets incorporates multiple windings
in order to provides an additional corrector field over the sextupo-
lar one, that can be configured to produce either a small dipole
(orbit corrector) or a skew quadrupole field. Out of 120 sextupoles
88 are wired as orbit correctors while the remaining 32 are wired
as skew quadrupoles.

LOCO [40, 23] has been the tool of reference to measure the optics since the

early commissioning phase of ALBA and therefore provides a solid reference to test

the results of turn-by-turn measurements. The errors specified in Tab. 2.2, have

been used as the basis of a previous study [32] to establish the ability of LOCO to
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Figure 2.2. One quadrant of the ALBA lattice. Each quadrant
is made of four cells containing two dipoles each (represented as
a black rectangle) plus several focusing (red rectangles) and de-
focusing (blue rectangles) quadrupoles. The straight sections in
between each couple of cells, where βx and βy reach a minimum,
are reserved for insertion devices. The injection section instead, is
located in the first one of the exceptionally long sections in between
quadrants. The plot includes also the horizontal dispersion (ηx).

correct the storage ring lattice. The test shows an r.m.s. beta-beat respect to the

nominal betatron amplitude of ∼1.0% for both planes, setting a measurement of

the lattice accuracy. This value has to be compared against the results of the linear

turn-by-turn measurements, that have been carried out on the lattice corrected

with LOCO.

The ALBA storage ring is equipped with 120 sextupoles magnets, the sex-

tupoles are grouped in 9 families, such that sextupoles belonging to the same family

are powered in series by the same power supply. This solution simplifies the setup

but at the same time excludes the ability to fine-tune the strength of each indi-

vidual magnet in order to correct the unavoidable magnet to magnet differences.

Sextupoles magnets incorporates multiple windings in order to provides an addi-

tional corrector field over the sextupolar one, that can be configured to produce
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Figure 2.3. The ALBA unit cell includes several magnets:
combined-function dipoles (black rectangles), focusing and defo-
cusing quadrupoles (in red and blue respectively) and sextupoles
(in purple and yellow depending on the polarity). The unit cell
includes also 8 BPM (black dots). The available short straight
sections in between the two dipoles are useful for hosting small
diagnostic devices such as, for example, the pinger magnets.

Table 2.3. The ALBA lattice includes several types of magnets.
For each type the number of elements is provided with a description
of the powering scheme.

Elements number notes

Dipoles 32 one family
Quadrupoles 112 individual powering
Sextupoles 120 9 families
Orbit correctors 88 individual powering
Skew quadrupoles 32 individual powering
BPMs 120

either a small dipole (orbit corrector) or a skew quadrupole field. Out of 120 sex-

tupoles 88 are wired as orbit correctors while the remaining 32 are wired as skew

quadrupoles. A list of the elements included in the ALBA lattice is provided in

Tab 2.3.
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Figure 2.4. The ALBA matching cell has a design similar to the
unit cell with the exception of providing a longer straight section
(in this case on the left side) with a value of βx and βy suitable
for the injection. Unlike the unit cell, the matching cell includes 7
BPM (black dots) instead of 8.

Table 2.4. SOLEIL storage rings lattice operation parameters (2015).

Circumference 354.1m
Energy 2.75GeV
Emittance 3.9 nm
Qx 18.157
QY 10.228
Natural ξx -53
Natural ξy -23
Corrected ξx +1.4
Corrected ξy +2.3
βx / βy at medium straight sec-
tions

4.2m / 1.7m

2.1.2. The SOLEIL storage ring lattice

A summary of the main lattice and machine parameters is provided in Tab. 2.4.
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The SOLEIL storage ring [15] employs a design very similar to ALBA. In fact,

except for the use of standard dipoles rather than combined-function ones, it follows

the same lattice arrangement of ALBA. The storage ring has a four fold symmetry

where each quadrant is composed by four cells with similar functionality as the one

described for ALBA. The lattice functions for one quadrant of SOLEIL are visible

in Fig. 2.5.
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Figure 2.5. One quadrant of the SOLEIL lattices. As in the
case of ALBA, the SOLEIL quadrant is made of four cells con-
taining two dipoles each (represented as a black rectangle) plus
several focusing (red rectangles) and defocusing (blue rectangles)
quadrupoles. In between each couple of cells there are straight
sections reserved for the insertion devices, where βx and βy reach
a minimum. Similarly to ALBA the injection system is located
in one of the exceptionally long straight sections in between two
quadrants. The plot includes also the horizontal dispersion (ηx).
The quadrupole labeled Q1 is the one used in Chapter 7 for test-
ing the linear lattice errors assessment capabilities of turn-by-turn
measurements.
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2.2. Comparison of the first-order approximated and tracking

simulation of coupling and non-linear errors in ALBA.

As shown in Section 1.1.2, at small amplitude, sextupoles and skew quadrupoles

contribute to the transverse motion by introducing a set of new spectral components

to the betatron motion (Eq. 1.41, 1.47, 1.51 and 1.58). Numerical integration is a

widely used and well established tool implemented by many accelerator simulation

codes that allows to obtain a very precise estimation of the betatron motion. On

the other hand the computational power required to carry out the tracking makes

it unpractical whenever several evaluations of the trajectory are required. This

is the case of the analysis carried out in Chapter 6, where the dependency of the

betatron motion on each lattice element is evaluated (magnets response matrix) and

inverted in order to establish a relation between magnetic errors and experimental

observations.

In this context the first-order approximated analytical formulas provide a quick

alternative to tracking, but their range of validity has to be proven.

Since the existing accelerator simulation codes did not provided the function-

ality required to compute the first-order analytical formulas for skew quadrupoles

and sextupoles, we have developed a specific code for this task.

The first-order corrections to the transverse motion due to skew quadrupoles

and sextupoles have been implemented in a first instance using the MATLAB lan-

guage and subsequently implemented as a ”patch” to the accelerator simulation

code Elegant [14] 1 using the C language (See Annex I for the full patch code).

In order to prove the correct functionality of the code and to establish the range

of validity of the analytical formulas, we carried out a set of tests, where the results

of the first-order approximation were compared against the tracking obtained with

the simulation code AT [43]. All the tests were performed by using the ALBA linear

lattice, including the skew quadrupoles and sextupole magnets and mimicking as

close as possible the conditions encountered in the experimental work that will be

presented in the next chapters.

1The patch has been accepted in the official Elegant codebase since the version 28.1.0 released on
July 24, 2015.
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2.2.1. Skew quadrupoles

A single source of coupling has been introduced in the ALBA lattice by pow-

ering one of the 32 skew quadrupoles at 8A (as done during measurements). The

horizontal turn-by-turn beam position has been computed by means of tracking

and analytical formulas at one BPM location for an initial vertical beam exci-

tation such to produce a maximum oscillation amplitude of 2mm (equivalent to

Jy = 1.5 · 10−7m).

The simulation of the resulting horizontal motion, plotted in Fig. 2.6, reveals

the presence of two spectral lines: one with frequency equal to the vertical tune,

signature of the coupling, and a second line at the horizontal tune. On the other

hand, the superposition of the line frequency with the unperturbed horizontal tune

line, makes this latter spectral line hard to measure. In fact, while it is possible to

simulate a pure vertical initial excitation, it is hard to produce experimentally the

same condition, where any misalignment in the pinger magnet (used to excite the

initial motion) can introduce a direct excitation of the horizontal tune. Because

of this limitation all the first-order corrections to the tune lines H(1,0) and V(0,1)

will not be considered in the experimental work.

To finish the comparison between tracking and first-order approximation, a

set of tests has been repeated including also the vertical plane and for different

skew quadrupole strengths. This time the simulations have been extended to all

the BPMs in the storage ring and the r.m.s. discrepancy between tracking and

first-order approximation calculated. As shown in Fig. 2.7, the discrepancy gets

comparable with the uncertainties observed in the experimental results only for

a skew quadrupole current higher than the one used in the measurements, which

confirm the validity of the analytical formula in this regime.

2.2.2. Sextupoles

A test similar to the previous case has been repeated to validate the first-order

approximated analytical formulas. This time the sextupole SH02 from sector 4

has been powered in order to produce a non-linear integrated normalized gradient

K2 =0.3m−2 (as done during measurements). In order to observe all the sextupo-

lar spectral lines, a large betatron motion has been excited in both planes at the
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Figure 2.6. Horizontal turn-by-turn trajectory (top) and its
Fourier transform (bottom) obtained through tracking and ana-
lytical formula. The trajectory has been sampled at one BPM
location for 100 turns. In the spectrum are also shown the am-
plitude and phase discrepancies, between the two methods of the
main peaks.

same time with maximum amplitude of 2.5mm and 3.9mm for the horizontal and

vertical plane respectively (equivalent to Jx = 3.6 · 10−7m and Jy = 6.0 · 10−7m),

values close to the ones used during measurements. Figure 2.8 shows the spectra of

the horizontal and vertical turn-by-turn trajectory sampled by one BPM obtained
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Figure 2.7. Comparison of tracking and first-order approxima-
tion for different strengths of the skew quadrupole, including both
planes and all the BPMs. The black squares indicate the case of
a skew quadrupole current of 8A (as used for measurements), the
strength is expressed relatively to this case. The two horizontal
lines show the typical uncertainty that has been observed in the
measurements. The discrepancy between first-order approxima-
tion and tracking gets important with respect to the experimental
noise, only for a skew quadrupole strength higher than what used
in the measurements.

through the analytical formula and tracking. To make the comparison of the re-

sults easier, the tracking simulations have been deprived from the high amplitude

betatron oscillation (∼ 3 orders of magnitude stronger than the lines under inves-

tigation) leaving the sextupolar lines only. The removal of the tune line has been

obtained by repeating the tracking with and without the sextupolar perturbation,

hence plotting the difference between the two simulations. Unfortunately the small

amount of tune shift, introduced by the presence of the sextupole, prevents from

obtaining a complete cancellation of the tune line and results in a discrepancy be-

tween tracking and analytical formula higherthan what observed for the other lines.

A similar mechanism is also probably responsible for the higher discrepancy of the



52 2. THE ALBA AND SOLEIL STORAGE RING LATTICES

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

A
m

p
lit

u
d
e
 [

µ
m

]

Frequency

H(1,0)

∆amp=8.2 ‰
∆ϕ=40 [µrad]

H(2,0)

∆amp=0.8 ‰
∆ϕ=39 [µrad]

H(0,2)

∆amp=0.5 ‰
∆ϕ=1.8 [mrad]

H(0,0)

∆amp=1.1%

Tracking
Analytical

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

A
m

p
lit

u
d
e
 [

µ
m

]

Frequency

V(1,-1)

∆amp=0.6 ‰

∆ϕ=1.0 [mrad]

V(0,1)

∆amp=3.0%

∆ϕ=6.3 [mrad]

V(1,1)

∆amp=0.6 ‰

∆ϕ= 0.9 [mrad]

Tracking
Analytical

Figure 2.8. Spectra of the horizontal (top) and vertical (bottom)
turn-by-turn trajectory obtained through tracking and analytical
formula. The trajectory has been sampled for 200 turns at one
BPM location. The contribution to the transverse motion due
to the large amplitude betatron oscillation has been removed in
the tracking by repeating the simulation without the sextupolar
perturbation, hence plotting the difference between the two. A
complete removal of the betatron oscillation would require the tune
to not change between the two simulations. The small tune shift
(∆νx = 7.2 · 10−8 and ∆νy = 5.0 · 10−8) due to the sextupole is
likely the responsible for the higher discrepancy observed in the
spectral lines H(1,0) and V(0,1).
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offset on the horizontal plane (spectral line H(0,0)). In fact the tracking takes into

account also the orbit change produced by other effects that have not been included

in the analytical formula, such as the path lengthening [42] due to the excitation

of the betatron motion. On the other hand, because these lines have not been used

in the experimental work, no further investigation has been necessary.

To complete the validation of the analytical formula, a set of simulations have

been repeated, including all the BPMs, and for different sextupole strengths and

excitation amplitudes. In fact, unlike in the case of skew quadrupole where no

amplitude dependency was observed, the sextupolar strength changes non-linearly

with the transverse position, resulting in a stronger effect at high amplitudes. As

visible in Fig. 2.9, also in this case the discrepancy becomes important with re-

spect to the experimental uncertainties only when departing significantly from the

parameters used during measurements.
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Figure 2.9. Comparison of tracking and first-order approxima-
tion for different sextupole strengths and excitation amplitudes.
The black squares indicate the reference case described in the text.
The two horizontal lines show the typical uncertainty that has been
observed in the measurements. Sextupole strengths and excitation
amplitudes are expressed relatively to the reference case.



CHAPTER 3

BPM turn-by-turn data acquisition

3.1. Beam position monitor

Beam orbit observation has become a workhorse for accelerator diagnostic,

being widely used in modern machines, which are equipped with an increasing

number of beam position monitoring device. Different applications with different

requirements resulted in the development of many different beam position moni-

toring techniques. In this case the beam position monitoring technique of election

is based on sampling the electric field produced by the charge stored in the ring

through a capacitive coupling. This approach allows for a very quick and precise

measurement of the beam transverse position without intercepting the beam itself

and therefore, allowing to sample the transverse beam position on a turn-by-turn

basis over thousands of consecutive turns.

3.2. Theory of operation

Approaching the ultrarelativistic limit, the electric field lines emanated by a

point-like electric charge get squeezed in the direction of motion, resulting in a

pancake like shape as depicted in Fig. 3.1. If the charge moves in a conductive

beam pipe an image charge on the beam-pipe walls is observed as a result of the

interaction between the field emanated by the charge itself and the beam-pipe.

Since the field strength on the beam-pipe walls depends on the charge position, the

Figure 3.1. The Electric field lines of a charge (red) get squeezed
in the direction of motion when approaching the ultrerelativistic
limit (black).

55
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measurement of the induced image charge at different azimuthal angles allows to

determine the transverse position of the charge. In his simplest implementation,

a BPM uses a set of capacitive pickup electrodes (buttons) to sample the electric

field produced by the charge at different azimuthal angles field produced and de-

termines the beam position. A common configuration is shown if Fig. 3.2 where

four electrodes spaced 90 degrees each other, pierce through the beam pipe and sur-

round the beam allowing for a full determination of the transverse beam position.

When the beam pass through the BPM an electric field reach each button with a

A

D

B

C

Figure 3.2. On the left a transverse cross section of a BPM. Here
the four buttons facing toward the beam (red dot) are visible. On
the right a longitudinal cross section showing two bunches (red
and black ellipses) crossing the BPM. The signals produced on
two opposing buttons is also shown.

different strength depending on the beam-button distance, inducing a proportional

image charge Q on the button it self. Accordingly a voltage V = Q/C, where C is

the button capacitance is induced on the button. In a properly designed BPM the

induced voltage will be proportional to the beam position in a fairly large region

of the transverse space. In this linear region the beam position can be calculated

from the measured voltage using the simple expression:

(3.1) x ∝ Va − Vb
Va + Vb

,

where Vi is the voltage induced on two facing buttons. At higher beam displacement

a proper electromatgnetich simulation of the BPM response is required in order to

take into account the non-linearity and reconstruct the beam position with high

accuracy.
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Whenever a beam pipe with complex geoemetry is employed, e.g. elliptical

beam pipe, is common to use buttons geometries that differ from the reference

case of Fig. 3.3. This is the case of light sources, where beam pipes are designed

Electron Beam

Anti-chamber

Upper buttons ports

Button

Figure 3.3. Schematic drawing of an actual BPM used in the
ALBA light source. The electron beam, in red, travels through the
smaller portion of the chamber while an antichamber is needed in
some section of the machine to accomodate for synchrotron radia-
tion extraction. The four buttons are located at a different angle
respect to the more traditional round chamber geometry.

to accommodate for synchrotron radiation. In this case flattened geometries and

antichambers, to allow the extraction of synchrotron radiation, are common choices.

Figure 3.4 shows the geometry of the BPM employed in the machines referred

in this work. A round chamber and a stripline solution is used in the case of

LHC, while all the three light sources under investigation employ capacitive BPM

and asymmetric vacuum chambers. The use of asymmetric chamber geometry do

not pose any limitation for the small amplitude measurements, where the beam is

confined to the linear region, while at high amplitude intricated electromagnetic

simulations are required to characterize the BPM response.
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Button feedtrough
Anti-chamber

BPM block

Beam pipe

Figure 3.4. Different flavors of BPM: On top one of the ALBA
BPM installed in the ring. In the picture is visible the BPM block
provided with the four feed-troughs that connects to the buttons
(contained inside the block and not visible in the picture) and the
characteristic flattened vacuum chamber. The SOLEIL BPM, that
employ a very similar design, is instead visible on the bottom.

3.3. Single turn capable electronics

The temporal structure of the produced signal follows closely the longitudinal

beam structure. Each time a bunch travels across the BPM a very fast signal is in-

duced on each button (Fig. 3.2), therefore a train of bunches travelling through the

BPM, induce on each button a radio frequency burst whose fundamental frequency
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is determined by the intra-bunch spacing, that for an electron storage ring usu-

ally falls in the range between 10 ns (100MHz) and 2 ns (500MHz), while hadron

machine can easily extend to lower frequency. Common radio receiving and de-

modulation techniques are suitable in order to measure the amplitude of such radio

frequency signal and accordingly deduce the beam position.

Furthermore in order to carry out a beam position measurement on a turn-by-

turn basis the measurement itself should last less than the storage ring revolution

time that, in the case of a light source, is roughly between 1 µs and 3µs.

All such considerations pose some significant constraint on the electronic re-

ceiver and demodulation-chain.

3.3.1. Down frequency convertion approach

As in a radio receiver the very first high frequency signal preconditioning is

carried out by a fully analog front-end, consisting of a tuned filter, amplifiers and

attenuators. Followed by a next step of down conversion, further filtering and signal

detection.

As the radio frequency techniques have evolved replacing more and more of

the analog components with their digital counterpart, a similar trend was observed

in BPM technology where an early digital to analog conversion is performed just

after the analog front-end, removing the need for a down frequency conversion and

therefore drastically simplifying the analog front-end section. One of the major ad-

vantage of such approach is a very general and flexible solution, in fact, since most

of the signal manipulations are realized in the digital domain usually in a field pro-

grammable gate array (FPGA) it is possible to employ the same BPM electronics

on different machines requiring only some minor parameters adjustment. Only the

very first filtering stage in the analog front-end needs a complete redesign to cope

with the specific RF frequency employed by each different machines. This made

it possible the commercialization of standardized BPM solutions that require min-

imal tuning to fit the requirements of different customers. Figure 3.5 shows the

schematic of a typical modern BPM electronics as the one employed in most of the

synchrotron light sources. After a first programmable attenuator and a tuned fil-

ter, which is the only machine specific component, the analog to digital conversion
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Numerical

 Oscillator

RF master

    clock

Figure 3.5. Block diagram of two channels of a BPM operating
with the subsampling technique.

stage follows directly. Because the input signal frequency falls in the range between

100MHz and 500MHz, a full bandwidth analog to digital conversion would be im-

practical requiring a very expensive converter, instead down sampling technique is

preferred. The Shannon sampling theorem states that, in order to fully reconstruct

a signal without any information loss, the digital conversion has to be operated

with a frequency at least twice the signal characteristic frequency. Sampling the

signal at a lower frequency would result in the aliasing phenomena where different

parts of the spectrum fold one over the other and get indistinguishable. In other

words the sampling frequency defines a set of zones, known as the Nyquist zones,

where a signal that belongs to a higher Nyquist zone would alias down into the

first Nyquist zone (Fig. 3.6). Therefore, since the signal collected by the BPM

buttons signal has relatively low bandwidth, it is common to operate the analog

to digital conversion with a lower frequency such that the whole signal spectrum

falls in a higher Nyquist zone and still being able to fully reconstruct the signal.

Special ADC, with a particularly short acquisition window are required to operate

in higher Nyquist zone, still a downside of such technique is a reduction of the

overall ADC performance. Nevertheless the overall simplification deriving from the

down-sampling approach is very appealing.

If all bunches in the beam follow the same transverse motion in a rigid manner,

the overall signal bandwidth would be determined by the revolution frequency: the

bunches train crosses the BPM at a different position at every turn, while during
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fs 2fs 3fs

Signal spectrum
First Nyquist zone

Filter Bandwidth

Figure 3.6. Frequency domain representation of the subsampling
process. In this case the sampling frequency fs has been chosen
such that the sampled signal falls into the seventh Nyquist zone.
The observed signal after the sampling is virtually indistinguish-
able from a replica that belongs to another nyquist zone, for this
reason a band-pass filter is needed to remove all the frequencies
that do not belongs to the selected Nyquist zone.

the same turn all bunches stay at the same location resulting in a turn by turn

change in amplitude of the RF carrier. Both the tuned filter in the analog front-

end and the bandwidth of each Nyquist zone in the analog conversion is well above

this limit guaranteeing a proper signal reconstruction.

Once the signal has been converted to the digital domain the demodulation

proceeds with a numerical direct conversion independently for each button. A

numerical oscillator, driven by the storage ring RF, feeds two numerical mixers with

a quadrature and phase signal tuned at the same frequency of the sampled signal

in a direct conversion fashion. Next follows a filtering stage, a magnitude detector

and the final beam position is calculated applying Eq. 3.1. In order to guarantee a

proper reconstruction of the beam position on a turn-by-turn basis the bandwidth

of this last filter has to be higher than the ring revolution frequency. Unluckily this

last filtering stage implemented in the BPM electronics under examination at the

three light sources, ESRF, ALBA and Soleil, did not fully satisfied this requirement.

Both ESRF and ALBA have BPM equipped with a ”Libera Brilliance” com-

mercial electronics provided by Itech [1], while at Soleil a sligltly older version,

under the name ”Libera Electron” is in use. All these electronics are provided by
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default with a rather slow filter that do not allow for proper turn by turn mea-

surement, reulting in what is commonly known as ”turn mixing”. Two different

approaches are possible to solve the problem:

• Replacing the filter with a properly designed one, which does not mix

consecutive turns.

• Postprocess the data by deconvoluting the turn by turn beam position

with the response function of the filter in order to undo the actions of the

filter.

While the first approach, being more elegant and efficient, would be preferred over

the second one, lack of documentation prevented to apply it in the case of Soleil

BPMs. Instead a new filter, known as MAF (moving average filter), developed on

purpose was used for ESRF and ALBA [41, 28].

In this new filter the in-phase and quadrature components of each BPM button

streamed at the ADC sampling rate are decimated down to the ring revolution

frequency by means of averaging over a fixed time window shorter than one turn

and synchronized with the beam crossing: each time the bunch train starts passing

through the BPM, the averaging process is initiated (the window is opened) and

is terminated only once the whole train has passed (the window is closed). This

approach makes it impossible for the signals produced at different turns to affect

each other and ensures a proper turn-by-turn reconstruction of the beam position.

On the other hand, since the BPM has no means to establish when the train starts

or finishes the timing of the averaging window has to rely on a tight synchronization

with the accelerator timing system. For this purpose each BPM receives a clock

signal that marks the turn of the train. Each BPM determines the start of the

averaging window by waiting a predefined delay after the clock signal has been

asserted and the window is closed after a fixed time equal for each BPM. Since

each BPM is physically located at a different position in the storage ring and

connected to the buttons and to the timing system, with cables of different and

sometimes unknown length, a proper delay value has to be measured precisely for

each individual BPM. For this purpose we measured for each BPM the proper

delay between train and clock arrival by scanning the delay value while observing
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the sum of the signal amplitude of the 4 buttons, which do not depends on the

beam position but only on the signal intensity. If the measurement is carried out

with a short window and a short train it is easy to observe when the averaging

window and train overlap (A detailed description of the procedure and results will

be provided in Chapter 5).

3.3.2. MAF implementation at ALBA

Because of the limited resources available on the FPGA, the MAF and stan-

dard firmwares can not cohabit on the BPMs. Instead, whenever the turn-by-turn

capabilities are required, the MAF firmware has to be loaded on each BPM and

unloaded before resuming standard operations resulting in a rather convoluted pro-

cedure. In fact, this routine is far from being error-proof and requires a certain

amount of ”human intervention” in order to make sure that every BPM is working

correctly after the FPGA has been reprogrammed and the BPM rebooted. The

whole process can last easily up to 30 minutes discouraging the use of turn-by-turn

measurements whenever not really required. For this reason, during the normal

operation of the ALBA storage ring, slow acquisition measurements are still pre-

ferred over the turn-by-turn ones that instead have been tested limited to the time

assigned for machine studies. On the other hand it is important to stress that this

condition is due only to a technical issue and is not an intrinsic limitation of the

turn-by-turn technique.





CHAPTER 4

The ALBA pinger magnet

In order to provide a transverse beam excitation required for the turn-by-turn

studies, the ALBA storage ring has been equipped with a pair of fast pulsed dipo-

lar magnets (pingers). Two pingers, which provide horizontal and vertical beam

displacement, are placed one next to the other.

An accurate characterization of the pingers was realized before the installation

in the storage ring. Measurements in the ALBA laboratory were carried out in

order to verify the proper operation of the magnets.

It is important to note that in the context of this work a thorough characteri-

zation of the pingers pulse is not required since, the analysis of the measurements

to follow have been carried out in such a way to remove any dependency on the

initial phase and amplitude of the betatron motion, that in turn are determined by

the pinger pulse characteristics.

4.1. Design of the pinger

Two main parameters, defined according to the experimental requirements,

characterize the pingers: the maximum peak magnetic field strength and the pulse

length. While the peak magnetic field strength is determined from the maximum

beam oscillation amplitude allowed by the physical aperture, the magnetic pulse

length is constrained by the storage ring circumference. In fact, in order to excite

a short train of bunches in one single turn, the magnetic pulse has to last less

than two times the beam revolution period minus the train length, as explained in

Fig. 4.1. For the ALBA storage ring this conditions results in a pulse length shorter

than 1.7 µs.

Because eddy currents would not allow the pulsed magnetic field to penetrate

the standard stainless steel vacuum chamber used in the ALBA storage ring, a

ceramic (allumina) chamber has been employed. A 400 nm titanium coating, on the

65
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Figure 4.1. Single pulse short train excitation scheme. Dealing
only with short trains of bunches allows to use a magnetic pulse
length up to two times the revolution time minus the train length
(90 ns) and still obtain a single turn excitation. In the case of
ALBA the target pulse duration has been fixed to 1.5 µs for both
pingers (horizontal and vertical).

inner wall of the ceramic chamber, is required in order for the beam-image current

to flow without interruption. A single loop of copper, wound directly around the

vacuum chamber, produces the magnetic field that is guided with the help of ferrite

blocks (CMD5055, from Ceramic Magnetic Ltd [2]) arranged in a window frame

geometry (Fig. 4.2). A complete description of the magnetic design is covered

in [39]

The maximum kick angle is fixed to θx = 2.0mrad and θy =1.4mrad for the

horizontal and vertical pinger respectively. Therefore, assuming a homogeneous

magnetic field along the longitudinal axis, the required field Bx,y can be obtained

from the relation:

(4.1) Bx,y =
p

c

θx,y
l
,
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Vertical pinger coil

Horizontal pinger coil

Partially assembled ferrite return yoke

Allumina vacuum chamber
300 mm

94 mm

38 mm

Figure 4.2. A view of the two semi-assembled pingers. In the
picture are visible the copper coils wound around the ceramic vac-
uum chamber and a few ferrite blocks that constitute part of the
magnetic field return yoke. The high voltage pulsed power supply
(not visible) is housed below the pinger as close as possible to the
coils in order to keep the leads short reducing the stray inductance.

where p is the beam momentum, c the speed of light and l the magnet length that in

this case is 300mm. Hence a magnet current Ix=2.0 kA and Iy=3.5 kA is calculated

from the required magnetic field (Bx =67mT and By =77mT) using the Ampere’s

law:

(4.2) Bx,y ≃ µ0Ix,y
l

.

From an electrical point of view the magnet behaves almost as a pure inductor,

allowing to drive the circuit in a resonator configuration, where a high voltage

charged capacitor C is connected, through a high speed isolated solid state switch

(Behlke, model HTS 120-500-SCR [3]), to the magnet coil forming a tank circuit

as shown in Fig. 4.3.

The capacitors are sized in order to obtain, when connected to the magnets

coils, a resonant circuit with a time constant of τ=1.5 µs. The time constant has

been fixed in order to allow a single turn excitation (condition realized for τ <

1.8 µs), but still guaranteeing a flat temporal profile along a short train of bunches

(bunch to bunch excitation discrepancy is less than 1% for a 45 bunches train as

the one used for measurements). The capacitance Cx,y is inferred from the pulse
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C

Rs

SCRD1

Trigger

Figure 4.3. Pinger pulsed power supply schematics. The coil of
the pinger is represented as an inductor (L). To power the pinger
magnet the high voltage SCR is switched on connecting the ca-
pacitor C, charged at high voltage through the resistor Rs, to L
and therefore forming a resonant circuit. The diode D1 is required
in order to inhibit the SCR from switching on again during the
negative voltage phase of the oscillation, while Dr and R1 provide
a path for the energy stored in the coil to be dissipated.

length and the inductance Lx,y of the coil (plus the coil leads) using the resonant

frequency ω of the tank circuit:

(4.3) ω =
π

τ
=

1
√

Lx,y · Cx,y
,

where the value of Lx,y can be approximated as (one turn coil):

(4.4) Lx,y ≃ Bx,y · Sx,y
Ix,y

,

with Sx,y the coil surface and Ix,y the peak current. Solving for the two coils

provides Lx=933 nH and Ly=152 nH to which is added 600 nH to take into account

for the stray inductance of the leads. Finally, substituting the values into Eq. 4.3

a value of Cx ≃150 nF and Cy ≃300 nF is obtained.

The capacitor charge voltage Vx,y is instead determined from the required peak

magnetic field using the relation:

(4.5) Vx,y = Lx,yIx,yω = Lx,yIx,y

√

Lx,y
Cx,y

,
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Table 4.1. Main design parameters for the horizontal and vertical
pingers.

Parameter Horizontal Vertical

Max transverse kick [mrad] 2.0 1.4
Max peak field [mT] 67 47
Max coil voltage [kV] 6.5 5.5
Peak current [kA] 2.0 3.5
Pulse length [µs] 1.5 1.5
L (including cables) [µH] 1.5 0.75
C [nF] 150 300
Length [mm] 300 300
Magnet gap [mm] 38 94
Pulse to pulse r.m.s. fluctuation [%] < 0.1 < 0.1
Pulse jitter [ns] < 1 < 1

providing Vx ≃6.5 kV and Vy ≃5.5 kV. A comprehensive table of the design param-

eters for the two pingers is found in Tab 4.1.

The choice of a resonant circuit design was driven mainly by the resulting sim-

plification of the power supply. A major weakness of such approach lies in the

inability to excite, with a sinusoidal pulse, a long train of bunches at constant am-

plitude. This condition constrains effectively the maximum amount of charge that

can be used in the turn-by-turn measurements, and therefore the signal strength

produced by the BPMs. On the other hand the limited bandwidth of the BPM

receivers employed at ALBA along with the small circumference of the storage ring

would not allow in any case to work with much longer train of bunches, mitigating

the limitations introduced by such design choice.

4.2. Characterization of the field and length of the pulse as a function

of the current

Figure 4.4 shows the results of measurement performed at ALBA of the vertical

pinger magnetic field and current for the a capacitor voltage of 1.0 kV, which is the

minimum value used during experiments. The field was measured by placing a

loop of wire inside the magnet bore while the pinger coil current with an inductive

probe (transformer) on the coil leads. The measured pulse length was 1.7 µs, which

is a value higher than the design one of 1.5 µs. Repeating the measurement for
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0.45KA

1.7us

Figure 4.4. Measurement of the magnetic field and current for the vertical
pinger observed for a capacitor voltage of 1.0 kV. This setting represents
the worst condition the pinger has been operated for experiments. In fact,
because of the non-linear behaviour of the solid state switch, lowering the
voltage results in a lenghthening of the pulse, that in this case reaches
1.7 µs. At 2.5 kV, the higher setting used for experiments, instead the
pulse length drops to 1.4 µs. Due to the capacitance and storage time of
the diodes and SCR the current drops to a negative value (white circle)
for a short time before swinging back to zero, anyhow this feature has no
effect on the performance of the magnet.

higher voltages has shown instead a shortened pulse as a consequence of the non-

linear behaviour of the solid state switch (whose resistance depends on the current),

dropping to 1.4 µs for a capacitor voltage of 2.5 kV (maximum value used in the

tests). The horizontal pinger instead exhibits a rather flat behaviour around the

settings used for experiments (between 0.5 kV and 1.5 kV) with a pulse length

oscillating between 1.1 µs and 1.0 µs.

The pinger magnets are triggered at 3.125 Hz by the ALBA timing system and

are locked to the beam revolution frequency. An adjustable delay makes it possible

to synchronize the magnetic pulse with the beam passage. The magnets have been

installed in a short straight section (see Fig. 2.3), in between the two dipoles of a

unit cell, where the relatively high values of βx,y allow to excite the beam with a

lower magnetic field.



CHAPTER 5

Turn-by-turn measurements setup

In order to implement correctly turn-by-turn measurements a tight synchro-

nization between pinger, BPMs and the storage ring timing system is mandatory.

Especially in the case of the ”young” ALBA light source, where the turn-by-turn

technique was implemented for the first time an extensive setup of the different

components has been required. Indeed such timing adjustment represented the

most demanding part of the whole work being the result of a long trial-and-error

process. Conversely the measurements carried out at SOLEIL did not require any

complex adjustment procedure since most of the synchronization issues had already

been solved during the previous years of operation.

5.1. ALBA setup

The ALBA storage ring turn-by-turn experimental setup includes 120 BPMs,

two pinger magnets (one for the vertical and one for the horizontal plane) and

a timing distribution network that delivers a trigger signal to the pingers and to

the BPMs. Figure 5.1 shows a schematic view of the timing distribution network.

The trigger signal is synchronized with the accelerator revolution frequency and

the 50Hz line frequency in order to suppress any noise induced by the power lines

in the measurements. Since the timing distribution network and the connection

between the BPM pickups and the BPM receiver electronics is realized through

cables of different length stretching for several tenths of meters, a proper calibration

is required in order to establish the overall delay of the connections and achieve the

required synchronization.

5.1.1. BPM synchronization

Measuring and comparing the betatron phase at different locations around the

storage ring requires the readout of all the BPMs to be synchronized on a turn-

basis in such a way that the data gathered from each BPM refers to the same turn.

71



72 5. TURN-BY-TURN MEASUREMENTS SETUP

RF ~500MHz

Line 50 Hz EGR

Fan Out

Sector 1 Sector 16

BPM 1 BPM 8

EVR

BPM

* EVR Delay

* Window Delay

EVR
* EVR Delay

EVR
* EVR Delay

Pinger

Figure 5.1. The timing system of the ALBA storage ring includes
an event generator (EVG) which broadcasts timing message on a
dedicated network. The network splits in 16 branches, one for each
sector where is connected to an event receiver (EVR). The EVR
decodes and forwards the trigger signal to all the BPMs in the
same sector. the EVRs allow to introduce a per-sector delay, while
a fine delay adjustment is provided internally by each BPM. Timing
signals are generated by the EVG synchronously with revolution
frequency of around 1.116MHz which in turn is locked to the main
RF frequency (∼ 500MHz). The trigger signals sent to the BPMs
are also kept synchronous with respect to the main line frequency of
50Hz, to minimize the effect of the unavoidable coupling of main
signal to the experimental apparatus. The timing of the pinger
magnet is driven by a dedicated EVR connected to the same timing
network.

Furthermore the beam signal and the MAF window must be properly synchronized

for each BPM to maximize the acquired signal.

Two approaches have been used for this purpose:

• Single pass synchronization: a fresh bunch is injected every time in the

storage ring and dumped after exactly one turn.
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• MAF window delay scan: a short train of bunches is stored in the ring,

the delay parameter of the MAF window is scanned for all BPMs allowing

to locate the delay that maximize the strength of the acquired signal.

The ”single pass synchronization” provides a valuable tool to cross-check the syn-

chronization on a turn basis. However, due to the short acquisition period (one

turn) and the small amount of charge that can be injected each time in the storage

ring, this technique suffers from a high noise level and does not allow a precise sub-

turn synchronization. On the other hand the ”MAF window delay scan” provides

a much cleaner and robust measurement, but it is affected by a one turn ambi-

guity: increasing the MAF delay by one revolution period results exactly in the

same measured strength, therefore not allowing for a turn-basis synchronization.

The two techniques have been used complementary in order to achieve a proper

synchronization on a turn and sub-turn level.

Once the required timing corrections have been defined, the synchronization

can be adjusted by acting on different elements along the timing distribution chain.

A first rough timing adjustment is obtained on a per-sector basis by acting

on each one of the 16 EVRs. The EVRs allow to introduce a delay in the trigger

signal common to all the driven BPMs. Since most of the delay is introduced in the

connection between the EVG and the individual EVR of each sector, this per-sector

correction takes out most inequalities in the timing distribution network. Instead

the fine delay tuning is achieved on a per-BPM basis by adjusting the internal delay

of each BPM receiver electronics.

The ”single turn synchronization” measurements were acquired by closing a

scraper, located immediately downstream of the injection point, this way the beam

was stopped exactly after having completed one turn. Figure 5.2 shows the results

for the ”single pass synchronization”. The discrepancy between different BPMs has

been reduced to a value below one turn ensuring a synchronization level adequate

to proceed with the ”MAF window synchronization”.

For this purpose a short train of 45 bunches (one tenth of the maximum 448

available buckets) was stored in the ring and a MAF window length of the same

length (90 ns) has been configured in each BPM. Figure 5.3 shows the measured
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Figure 5.2. In the single pass synchronization a fresh train of
bunches is injected in the storage ring and dumped after exactly
one turn by blocking the beam passage with a scraper. The signal
strength, defined as the sum of the strengths measured on the 4
BPM buttons, is plotted as a function of the turn number. The
maximum signal strength falls for every BPM at the same turn
number, therefore a synchronization better than one turn is guar-
anteed. Because the measurement was carried out without the
MAF filter, the effect of the turn-smearing is visible in the turns
following and preceding the maximum, as the signal needs more
than one turn to fall to zero.

signal strength as a function of the window delay and the optimum observed delay

that has been used for the following measurements.

5.1.2. Pinger magnet calibration

In order to excite in a consistent way the betatron motion of a short train

of bunches a proper timing between the beam and the pinger is needed. In fact

because of the sinusoidal shape of the magnetic pulse of the pinger only a small

time interval around the top of the pulse offers an adequately flat profile suitable

for a uniform excitation along the whole train length. Furthermore the kick pulse
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Figure 5.3. (Top) the delay of the MAF window has been in-
creased from 0 to 50 units of ADC clock (∼ 8 ns) while measuring
the sum of the signal strength of each button for each BPM. The
first and highest encountered maximum defines the best synchro-
nization, the secondary maxima are due to a partial overlapping
of the MAF window and the signal, stretched in time by the band-
pass filter in the analog front-end (as discussed in Section 3.3.1).
The delay relative to the first maximum is computed for each BPM
and taken as the optimum delay value (bottom picture).
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Figure 5.4. Pinger delay scan. The timing between beam and
pinger is established by scanning the pinger EVR delay and mea-
suring the induced betatron amplitude for each delay.

stretches in time when decreasing its strength, therefore a proper characterization

of the pulse temporal properties for different kick strengths is required.
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The calibration is obtained by measuring the produced betatron oscillation

amplitude as a function of the pinger EVR delay for every working voltage (kick

strength). The results of the measurements are presented in Fig. 5.4.

Once established the optimal pinger delay for each voltage, we proceed with a

second important calibration: establishing the relation between the pingers voltage

and the resulting induced betatron amplitude. The results are shown in Fig. 5.5,

where the betatron action averaged over all the BPMs is plotted against the pinger

voltage.
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Figure 5.5. Excitation amplitude (action) induced by the hori-
zontal and vertical pinger have been measured for different pinger
voltages.

5.1.3. Low chromaticity lattice

During the standard operation the ALBA storage ring operates with a horizon-

tal and vertical unnormalized chromaticity respectively of +2.0 and +4.5 to avoid

the so called head-tail instability. Due to the natural energy spread of the beam,

the high value of the chromaticity results in some important limitation to turn-by-

turn observations. In fact the BPMs are able to sample the betatron motion as
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Figure 5.6. Turn-by-turn vertical beam position measurements
for the standard operation and zero chromaticity lattice. In the
standard operation case (top) a fast damping along with the char-
acteristic pulsating amplitude is observed while the zero chromatic-
ity case (bottom) has an almost purely exponential decay.

long as the particles within each bunch move all together in a coherent oscillation,

on the other hand the albeit small tune difference produced by the chromaticity,

leads to a quick decoherence between the betatron motion of particles of different

energy. As a result of the decoherence process the overall bunch motion observed

through a BPM does not resemble anymore the one described in Section 1.1.2,

showing instead a characteristic pulsating envelope plus an overall faster damping

as depicted in Fig. 5.6. Reducing chromaticity to a value as close as possible to

zero is an easy work around to solve the problem at the root. Moreover the lim-

ited amount of charge used during these measurements does not require a strong

positive chromaticity in order to maintain the beam stability. Once corrected the

sextupoles to produce zero chromaticity the artifacts (envelope modulation and fast

damping) introduced by the decoherence process disappear. A visual inspection of
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the acquired turn-by-turn beam position from one BPM confirms the correct tuning

of the lattice (Fig. 5.6).

5.2. SOLEIL setup

The SOLEIL storage ring is also equipped with two pingers [31] (one for the

vertical and one for the horizontal plane) and 122 BPMs with ”Libera Electron”

receiver electronics. Unlike the ”Libera brilliance” BPM receivers used in the ALBA

storage ring, these older units do not allow to use a moving average filter as was

done at ALBA. On the other hand, since the demodulation chain of the BPM has

a bandwidth smaller than the revolution frequency of the beam, the turn mixing

effect discussed in chapter 3.3.1 is an issue that has to be addressed.

5.2.1. BPM turn mixing

The strategy developed at SOLEIL and Diamond light sources in the past

years [27, 10] to compensate for the turn mixing effect is based on a deconvolution

approach where the response of the BPMs to a single pass of a bunch (impulse re-

sponse) is measured and removed from the turn-by-turn data with a deconvolution.

The BPMs impulse response was characterized with an approach similar to the

one used to achieve the single pass synchronization at ALBA (Fig. 5.2): a scraper,

located immediately before the injection point was closed in order to stop the beam

exactly after having completed one turn making it possible to acquire the single turn

response of each BPMs. Figure 5.7 shows a typical signal measured for one BPM.

The acquired impulse response was then used to compute a filter that cancel out the

effect produced by the BPM internal filtering. First, the Fourier transform of the

impulse response is calculated. Then the impulse response spectrum is inverted and

transformed again to the time domain. Finally the obtained function is convoluted

with the measured turn-by-turn data.

Such procedure provides data free of the turn mixing effect as long as the BPM

impulse response has been measured correctly and no time fluctuation in the BPM

behavior is present. While the first condition is met by averaging over many single

pass acquisitions, the last one depends solely on the BPM stability.
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Figure 5.7. Impulse response for one BPM measured in the
SOLEIL storage ring. The turn mixing effect is evident and ex-
tends to around 6 consecutive turns.



CHAPTER 6

Turn-by-turn measurements analysis and results

As discussed in Section 1.1.2 at small amplitudes the betatron oscillation is

fully determined on each transverse plane by a set of 3 parameters: a frequency

(tune), an amplitude (betatron-amplitude) and a phase (betatron-phase). Each one

of the 3 parameters can be deduced from turn-by-turn beam position measurements

by means of a spectral analysis as described in Appendix A. Since the betatron-

amplitude and betatron-phase are both functions that depends on the location of

the observation point respect to the lattice, it is possible to combine the information

gathered from many BPMs in order to obtain a detailed picture of the storage ring

optics. On the contrary the tune, being a constant of motion does not provide any

position dependent information but still represents a very robust tool to confirm the

functionality of the experimental apparatus and to investigate the overall stability

of the storage ring lattice.

In the following sections the results of the turn-by-turn beam position mea-

surements carried out at the ALBA and SOLEIL storage rings in the linear regime

are presented: first of all the tune measurements have been employed to confirm

the functionality of the experimental setup and to verify the storage ring stability

next the analysis has been extended also to the betatron amplitude and betatron

phase.

6.1. ALBA turn-by-turn measurements

6.1.1. Tune: measurements and sources of error

In a properly functioning setup the measurement of the betatron tune, realized

at different locations around the storage ring should provide the same result, within

the experimental uncertainty.

The measurement was carried out by exciting the beam with the horizontal

or the vertical pinger at small betatron amplitude in order to make negligible the

81
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non-linear optics effects. A maximum betatron amplitude of ∼ 0.6mm and ∼

0.9mm respectively for the horizontal and vertical plane (that corresponds to an

action Jx=0.22 µm and Jy=0.37 µm or to an average amplitude of ∼ 0.5mm for

both planes) was chosen. The whole process was repeated for 100 acquisitions in

order to obtain a sufficient statistics to study the repeatibility of the measurement

and the stability of the storage ring optics. During each acquisition the beam is

excited with the pinger in both planes and the beam position recorded by all the

120 BPMs for 1000 consecutive turns, allowing for a very precise reconstruction of

the tune frequency. Once the data were transferred from the BPMs to the control

computer the spectral analysis described in Appendix A was performed and the

tune frequencies extrapolated.
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Figure 6.1. Histogram of the horizontal and vertical tune mea-
sured by the 120 BPMs one acquisition. A Gaussian fit of the
experimental data is shown along with the value of the sigma and
mean value for both planes.
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Figure 6.3. Correlation plot and Pearson correlation coeffi-
cient (r) for the horizontal and vertical tune shift. The clear an-
ticorrelation manifests the presence of one or more quadrupolar
error sources.

Figure 6.1 shows the histogram of the measured vertical and horizontal tunes

obtained for a set of 100 acquisitions. The variation among BPMs is within 1 ·10−6

and 3 · 10−6 respectively for the horizontal and vertical planes.

On the other hand an overall tune fluctuation common to all the BPMs is

observed among different sets of acquisitions (Fig. 6.2).

A tune change measured consistently by all BPMs suggests the presence of

a real fluctuation of the optics of the lattice. In fact since each BPM measures

independently of the others, there is no other reason to expect a common error.

Equation 1.67 shows how the presence of a quadrupolar error induces a tune

shift on both planes with opposite sign, independently of the perturbation polarity

and beta values. As a consequence the presence of an anticorrelation (correlation

with negative slope) between horizontal and vertical tune variations represents the

signature of a time varying quadrupolar error.

Figure 6.3 shows that a correlation is indeed present confirming the hypothesis.

The nature of such an error has now to be investigated. Assuming the source is

actually a magnetic element of the storage ring, most likely one or more quadrupoles
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being the elements with the stronger impact on the machine tune, we subdivide the

possible causes in two categories:

• Drifts: for example produced by temperature change of a magnet which

produce an alteration of the magnetic field.

• Magnetic field noise: induced by electrical noise in magnets power sup-

plies.

In order to identify the presence of drifts both tunes were plotted against the

time and the correlation between tune and time calculated. As it appears from

Fig. 6.4 no correlation is observed, therefore the hypothesis of a drift has to be

excluded.
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Figure 6.4. Correlation plot and Pearson correlation coeffi-
cient (r) of the tune shift as a function of time for the horizontal
and vertical plane. The absence of a correlation between tunes and
time shows that no major magnets drift is present.

The presence of a certain amount of electrical noise in the current fed to the

quadrupoles is instead expected. To estimate the effect induced on the tunes we

proceed by calculating the effect produced by the presence of electrical noise in a

quadrupole with strength equal to the average of the quadrupoles strength. Equa-

tion 1.67 provides the tune shift induced by a quadrupolar error source, that for a

source with strength σ̄K equal to the average strength and situated at a location



6.1. ALBA TURN-BY-TURN MEASUREMENTS 85

with beta β̄ equal to beta value averaged over all the quadrupoles location yields:

(6.1) σ̄Q =
β̄ · σ̄K
4π

Assuming the noise affecting each quadrupole uncorrelated with respect to the

others, the overall tune fluctuation induced by N quadrupoles is σ̄Q
√
N . Therefore

in the case of the ALBA storage ring, where a typical noise level of 10ppm [38] is

specified for the quadrupoles power supplies, an overall tune fluctuation of 1.5 ·10−4

and 1.5 · 10−4 respectively for the horizontal and vertical plane is expected.

Such lattice fluctuations, as it will be more evident in the next sections, rep-

resent one of the most important issues for turn-by-turn measurements that, being

by their own nature quick, are sensitive to such fast transients.

To further investigate the temporal evolution of the tune that eventually lead

to the observed tune jitter, we decided to carry out another test: a very long

acquisition of 2.5 · 105 turns, equivalent to ∼250ms was measured with one BPM,

the turn by turn data were sliced in short portions of 1000 turns each and analyzed

in order to get a picture of the temporal evolution of the tune. Since the betatron

motion excited with the pinger can not last for such long time a different strategy

was required to achieve such a long tune observation. The necessary excitation was

produced on the vertical plane by reducing the chromaticity enough to observe a

vertical transverse beam instability.

The betatron oscillation induced by the instability is generally very difficult

to control and therefore not a recommendable approach to carry out turn-by-turn

measurement. Nevertheless the quality of the acquired data was good enough to

obtain a complete picture of the vertical tune spectrum from 8Hz to 550Hz.

The spectrum in Fig. 6.5 shows two clear peaks at 100Hz and 300Hz, this are

suspiciously related with the 50Hz line frequency and are typically produced by

single phase and three phases rectifiers as the one used in magnets power supplies.

On the other hand the integral of the spectrum shows that the two peaks take into

account only for a small fraction of the overall noise where instead a rather constant

floor provides the strongest contribution. Such result suggest that the overall power
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of 30 acquisitions.

supplies performance is as specified and no major leak or noise driving source is

affecting the accelerator.

6.1.2. Betatron amplitude

Also the betatron motion amplitude provides some important information on

the storage ring optics. Equation 1.4 shows that an intimate relation exists between

the function β and the motion amplitude A:

(6.2) βi =
A2
i

J

where J represents the kick strength and the index i identifies the BPM where the

observation is carried out.

Unfortunately a reliable estimation of the kick strength J is not easily accessi-

ble. In fact the pinger shows a kick repeatability of around 1%, therefore limiting

to this level the precision to estimate βi. To workaround the problem we have
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introduced a new normalization of the β-function β̄ defined as:

(6.3) β̄i =
βi

∑N
i=0 βi

N

where N represents the total number of BPMs. By enforcing a normalization

constraint the dependency on any scale factor common to all BPMs is eliminated.

The same way the β̄-function is obtained from the motion amplitude as:

(6.4) β̄i =
A2
i

∑N
i=0A

2
i

N

allowing to compare experimental observations to the theoretical storage ring model.

It is important to note that by applying such renormalization to the experimental

data, a strong deviation in one BPM induces a systematic error in the evaluation

of β̄i at all the other locations, limiting such technique to the case of small optics

error only. Furthermore the presence of malfunctioning BPMs now represents a

significant danger since a single outlier BPM can produce a significant deviation in

the whole analysis, therefore a particular care is required in order to locate faulty

BPMs.

The results of the β̄i measurement in the ALBA storage ring is plotted in Fig.

6.6. The experimental observations are compared against the design model of the

storage ring resulting in an overall r.m.s. discrepancy (β-beat) between design

model and measurements of 2.0% and 2.5% respectively for the horizontal and

vertical planes, in agreement with what observed in similar experiments [29, 8, 21].

6.1.3. Phase advance

Another useful observable accessible from turn by turn measurements is the be-

tatron phase. Since the betatron phase is defined up to an overall phase, depending

on the initial motion conditions (determined by the pinger timing and location), it

is preferable to introduce a new quantity, the phase advance ∆ψ†(sn), defined as

the difference of the betatron phase observed by two neighbor BPMs:

(6.5) ψ†(sn) = ψ(sn)− ψ(sn+1).
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Where the index n identifies the BPM. Because ∆ψ†(sn) is obtained from the

difference of two betatron phase observations, any initial phase offset common to

all BPMs is canceled and therefore the dependency on the initial condition removed.

Figure 6.7 shows the results of the phase advance measurement in the ALBA

storage ring. The experimental observations are compared against the nominal

model of the storage ring showing an overall r.m.s. discrepancy ”phase-beating”

between model and measurements of 6.0mrad and 6.8mrad respectively for the

horizontal and vertical planes. Also in this case the observed disagreement compares

well with similar experiments [8, 21].

6.1.4. Further measurement and analysis optimization

Up to now the choice of the excitation amplitude and the number of turns

considered in the analysis has been set solely on the basis of a rough estimation.

On the other hand a methodical study of the effect produced by changing this two

parameters is important to understand the limit of validity of the measurement and

to optimize the analysis.

A high excitation amplitude is desirable in order to maximize the beam excur-

sion and therefore to reduce the measurements uncertainty, on the other hand the

validity of the analysis carried out in Section 1.1.2 is limited to small excitation

amplitude, where non-linear effects can be neglected.

The results of the β̄ and ψ† measurements for different amplitudes are plotted

in Fig. 6.8, it is evident how an increase in the kick strength produces a distortion

of the observed β̄ and ψ†. Choosing the best working condition is matter of defining

the required measurement precision and consequently fix a kick strength producing

a distortion lower than the fixed limit.

The precision of the analysis presented in Appendix A is strongly dependent on

the number of acquired turns: a high number of turns is generally preferable. On the

other hand because of the natural damping of the betatron motion, increasing the

number of turns above a certain level does not produce any noticeable improvement,

while resulting in a higher load on the BPM network due to the increased data

transfer. In fact, since the data transfer is achieved on a network shared between

many different nodes, an overall erratic behavior was observed when dealing with
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heavy data transfers. The experience showed that to measure consistently up to

500 consecutive acquisitions the number of turns has to be kept below 500.

The results of the β̄ and ψ† observed when analyzing the same acquisition using

different number of turns are presented in Fig. 6.9.

With 500 turns a precision better than 0.5% is observed for the β̄ measure-

ments and 0.5mrad for ψ†, values that are below the optics fluctuations due to the

quadrupoles magnet induced noise. Therefore there is no advantage in increasing

the number of turns used in the analysis above 500 whenever measuring average

properties of the storage ring optics.

6.2. SOLEIL turn-by-turn measurements

A similar set of measurements for the tune, β̄ and ψ† as the one acquired at

ALBA was also repeated in the case of SOLEIL. Figure 6.10 shows the results for

the vertical and horizontal tunes measurement, also in this case a certain amount
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of tune jitter was visible, even if around a half of what has been observed in the

case of ALBA.
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β̄ and ψ† measurements (Fig. 6.11 and Fig. 6.12) show a disagreement with

respect to the theoretical value similar to what observed at ALBA, on the other

hand the acquisition to acquisition fluctuations appear to be much higher possibly

because of the older BPM electronics employed in the SOLEIL storage ring.
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CHAPTER 7

Measurement and correction of lattice errors

In the previous sections the setup to carry out turn-by-turn measurements

in the ALBA and SOLEIL storage rings has been presented and demonstrated,

in this chapter instead the same analysis is used as the base to characterize the

presence of single sources of gradient error in the lattice of a storage ring. In

a first test single gradient error sources has been introduced on purpose in the

lattice of ALBA and SOLEIL, hence turn-by-turn measurements have been used

to characterize the produced error distortion. Once confirmed the validity of the

measurements against the theoretical expectations, the same data have been used

to infer a complete lattice error model.

The analysis is then extended to coupling and sextupolar errors. For this

purpose the same approach employed for the gradient errors characterization is

applied, but this time introducing skew quadrupolar or sextupolar error sources in

the lattice.

Such analysis is of particular interest since it represents the first step to attempt

a complete linear and non-linear lattice correction.

7.1. Linear optics corrections

As discussed in Section 1.2.5 the presence of a quadrupolar error source in

the magnetic lattice results in an alteration of the β̄ and ψ† functions. Such vari-

ation depends on the strength and position of the error sources (Eqs. 1.75 and

1.77), turning β̄ and ψ† measurements into a suitable tool to characterize magnetic

gradient errors in a storage ring.

To assess the sensitivity of turn-by-turn measurements to quadrupolar errors,

we conducted a series of experiments where known gradient error sources were in-

troduced on purpose in the magnetic lattice. Two quadrupoles, QH01 and QH08

(see Figs. 2.3 and 2.4), were detuned in order to introduce, in a controlled manner

95
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the error. First the current in QH01 was decreased in steps up to −1% of the nom-

inal value and next also the current in QH08 was reduced in steps up to −1%. For

each quadrupole configuration turn-by-turn beam position data were acquired and

β̄ and ψ† derived following the same procedure described in the previous chapter.

Hence the β̄ and ψ† variations have been calculated as:

∆β̄x,y =
β̄0
x,y − β̄nx,y
β̄0
x,y

∆ψ†
x,y = ψ†0

x,y − ψ†n
x,y,

(7.1)

where the superscript 0 identifies the reference measurement carried out before

having introduced any quadrupolar error, while the superscript n refers to any

other configuration where an error in QH01 and QH08 was present.

In a first test the measurements of ∆β̄x,y and ∆ψ†
x,y, for a decrease of current

in QH01 of −1% while no change was applied to QH08, have been compared with

the value predicted by the theory. The results, presented in Fig. 7.1, agree with

the theoretical predictions, only a minor disagreement is visible in the case of ∆β̄x.

The next step consists in trying to characterize the gradient error from the same

measurements. This is achieved by fitting an error model in order to reproduce the

observed ∆β̄x,y, ∆ψ
†
x,y: a set of error sources is assumed, in this case located at

QH01 and QH08 only, and their strength is optimized in order to reproduce the

measured observables (∆β̄x,y and ∆ψ†
x,y).

To simplify the fitting procedure we take advantage of the linear response of the

optical functions to small gradient errors. We proceed by evaluating the theoretical

value of ∆β̄x,y and ∆ψ†
x,y The results are arranged in a rectangularm×n matrixM

known as the ”beta and phase to quadrupole response-matrix”, where produced by

a quadrupole of unitary strength located at each error source (in this case QH01 or

QH08). every column represents the deviation of the observables of interest (∆β̄x,y,

∆ψ†
x,y or a combination of the two) sampled at the position of the m BPMs, for

each one of the n error sources. As it is shown by Eqs. 1.64 and 1.71, the response

matrix provides a picture of the errors footprint in terms of the produced optical

function distortions and contains information that can be exploited to carry out

the fit of a lattice error model. In fact, because of the linear dependency of ∆β̄x,y
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and ∆ψ†
x,y on the errors strength, the effect of an arbitrary configuration of errors

can be calculated as:

(7.2) ~∆ =M · ~E,

where the entries of the vector ~E represent the strength of each error source and ~∆

the observables of interest (∆β̄x,y, ∆ψ
†
x,y or a combination of the two). Therefore,

given an experimental observation ~∆♯ of the vector ~∆, we can calculate the strength

of each error source as:

(7.3) ~E♯ =M−1 · ~∆♯.

Since the response matrix M in general is not square or full rank, the system

of linear equations (Eq. 7.2) lacks a unique solution and a pseudoinverse matrix

M−1 has to be used to compute a ”best fit” (in the least squares sense) solution.

A recipe to calculate M−1 is provided by the singular value decomposition, where

a rectangular m× n matrix M is factorized as:

(7.4) M = UΣV ∗,

with U an m ×m unitary matrix, Σ a diagonal m × n matrix with non-negative

real numbers on the diagonal known as the singular values and V an n×n unitary

matrix. Given the previous factorization of M it can be shown that the generalized

inverse matrix M−1 (that satisfy the condition MM−1M =M) is:

(7.5) M−1 = V Σ−1U∗.

From a practical point of view the decomposition of Eq. 7.4 can be obtained

with several different numerical methods, in this case the QR algorithm [22] im-

plemented in the LAPACK computer library [4] was used.

In the first instance four independent fits have been performed analyzing sep-

arately ∆β̄x, ∆β̄y, ∆ψ†
x and ∆ψ†

y. A comprehensive comparison of the results

is shown in Figs. 7.2 and 7.3. The level of accuracy of the results is similar for

∆β̄x,y and ∆ψ†
x,y and regardless of the plane. While a minor deviation on the es-

timation of the strength of QH01, compatible with the acquisition to acquisition
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fluctuation noise, is shown in every measurement, this is not the case for QH08

where a constant deviation (around 15%) is encountered. Being independent of the

measurement approach, the discrepancy suggests a miscalibration of the magnet

strength or a deviation in the evaluation of the beta functions at the magnet lo-

cation. The results point out that, at this level the measurements to be fitted are

equivalent and no superiority of one parameter (betatron amplitude or phase) over

the other is shown.

Having proved the functionality of the method, we proceed to extend the anal-

ysis to the full lattice, including all the quadrupoles in the storage ring. In order

to gather together the information provided by the amplitude and phase of the be-

tatron oscillation and extend the fitting process to ∆β̄x,y and ∆ψ†
x,y measurements

at the same time, we define a new complex quantity ~ζ to replace ~∆ in Eq. 7.3:

(7.6) ζix,y = β̄ix,y · eıψ
i
x,y ,

where i identifies the BPM. Moreover, by joining together the vectors ~ζx and ~ζy in

one single vector it is possible to extend the fit to the full set of observables.

Unfortunately the straight application of the previous method to the full lattice

does not provide any useful results, even by extending the fit to the whole set of

observables by means of the previously defined complex variable ~ζ. As it is visible

from Fig. 7.4a the fit is characterized by a very high level of uncertainty that

completely submerge the signal, making the method useless in practice.

The reason for such poor result is to be attributed to the limited precision of

the experimental observations together with the high number of quadrupoles in-

cluded in the fit. In fact, since two closely located error sources produce a very

similar beta-beat and phase-beat pattern, the presence of an increased number of

near quadrupoles makes it hard to distinguish correctly the sources of error. Fur-

thermore two close-by error sources with equal strength but opposite sign produce

an effect that cancels out giving rise to an ambiguous condition where multiple fake

errors with opposite sign can be erroneously fitted still being compatible with the

measured data.
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Figure 7.2. Results of the fit of QH01 and QH08 using the beta-
tron amplitude measurements only. Two separated fits have been
carried for ∆β̄x
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Figure 7.3. Results of the fit of QH01 and QH08 using the be-
tatron phase measurements only. Two separated fits have been
carried for ∆φx
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(bottom).
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Figure 7.4. Results of the fit including all the 112 quadrupoles of the ALBA
storage ring. The full set of observables, including betatron phase and amplitude
for both planes, has been used. The fit has been repeated three times: first using
the singular value decomposition technique (A), than using the truncated singular
value decomposition (B) and finally with the Tikhonov regularization (C). While
the plain singular value decomposition appears to be dominated by noise, the other
two techniques produce a much cleaner result.
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An improvement to the analysis can be obtained by constraining the norm of

the vector ~E♯ to a small value in order to limit the identification of fake errors.

This condition can be achieved by introducing a truncation [33] in the compu-

tation of the inverse matrix M−1:

(7.7) M−1 = V Σ−1U∗ Σ−1
ii =















1/Σii if Σii > k

0 if Σii ≤ k,

where all the components of the solution associated to singular values smaller than

the threshold k have been removed. In the decomposition of Eq. 7.4 only the higher

singular values provide an important contribution to the matrix M , identifying a

strong correlation between a certain error configuration and the generated set of

observables. The opposite is true for the inverse matrix M−1, where the strongest

contribution comes from the small singular values that in turn identify a loose

correlation between a given set of observable and the actual error configuration that

produced it. Because of the lower importance of the terms associated to the smaller

singular values, the truncated version of M−1 provides a good approximation of

M−1 for an adequately small value of the threshold parameter k and at the same

time damping the noise introduced by loosely correlated error configurations, as in

the case of close-by quadrupoles.

The results of the new analysis are shown in Fig. 7.4b, while the spectrum of

the singular values is plotted in Fig. 7.5. Lacking of a better approach the threshold

has been fixed to k = 1.9 ·10−2 following a trial and error technique: the parameter

k has been swiped in order to optimize the result, based on the knowledge of the

performed lattice manipulation. This technique is prone to introduce a bias, since

the analysis is adjusted in order to obtain the expected result, on the other hand

the large number of singular values unaffected by the cut (as shown in Fig. 7.4b)

ensures a reliable result. To prove the effectiveness of the selected threshold the

experiment should be repeated for many different error configurations, test that

has not been carried out because of the extensive time requirements.

A drastic reduction of the noise is clear and the two sources of gradient error

located at QH01 and QH08 are clearly identified above the noise.
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Figure 7.5. Singular values spectrum. The black line shows the
threshold k = 1.9 ·10−2: red crosses are included in the calculation
of the truncated inverse response matrix M−1 while blue dots are
discarded.

An alternative approach to the truncated singular value decomposition is pro-

vided by the ”Tikhonov regularization” [44, 33]: the inversion of Eq. 7.4 is refor-

mulated as a least squares minimization problem, where the squared residuals to

be minimized are:

(7.8) ||M ~E − ~∆||2.

Now an explicit constrain on the norm of the vector ~E♯ is introduced turning

the residuals to be minimized into:

(7.9) ||M ~E − ~∆||2 + ||Γ ~E||2,

where the Tikhonov parameter Γ is set to 5 · 10−4, following a trial and error ap-

proach as previously done for the parameter k. As shown in Fig. 7.4c the Tikhonov

regularization is also an effective approach to cut down the noise producing a result

very similar to the truncated singular value decomposition.



7.1. LINEAR OPTICS CORRECTIONS 105

-5

 0

 5

 10

 15

 20

 25

 0  50  100  150  200  250

E
rr

o
r 

s
tr

e
n
g
th

 [
1
0

-3
/(

m
)]

Quadrupole magnets position [m]

Singular value decomposition

Expected error

Figure 7.6. Plot of the fit including the 163 quadrupoles of the
SOLEIL storage ring using the Tikhonov regularization method
with Γ = 1.5 · 10−3. The full set of observables, betatron phase
and amplitude for both planes, has been used.

From the previous results, the underestimation of the error strength appears a

common side effect to both methods (the truncated singular value decomposition

and the Tikhonov regularization). This is not surpising since the norm of the error

vector ~E has been constrained to small values.

A similar experiment was also attempted in the SOLEIL storage ring. Here the

quadrupole Q1 of the first cell (see Fig. 2.5) was selected as the source of gradient

error and changed by 2%. The same analysis, employed at ALBA was applied also

in this case with the only exception that the slower turn-by-turn measurements

setup allowed only to take 30 acquisitions for each configuration.

Also in this case the error reconstruction based on the simple singular value

decomposition was dominated by a strong noise, therefore the Tikhonov regular-

ization has been employed. Figure 7.6 shows the result of the fit, similar to what

observed in the case of ALBA: the position of the error source has been correctly

discriminated but its strength is by far underestimated as a consequence of the

constraint on the norm of the error vector ~E.
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7.2. Coupling and Non-Linear Corrections

The same procedure used in the previous section to localize single sources of

gradient error can be extended to the case of coupling sources and sextupoles mag-

nets. However, since tune spectral lines carry mainly information related to the

quadrupoles, different spectral lines have to be included in the analysis in order to

obtain a complete picture of coupling and non-linear sources.

7.2.1. Coupling

For the case of coupling, as discussed in Section 1.2, the signature lines for

the horizontal and vertical plane have frequency respectively equal to the vertical

and horizontal tune respectively. With this understanding, amplitude and phase

of the coupling lines are extracted from the turn-by-turn data as described in Ap-

pendix A. To get rid of the amplitude and phase dependency of the coupling lines

on the excitation conditions produced by the pinger magnets, coupling lines are

renormalized by the tune lines as explained in Section 1.2.2. As a result the two

new quantities (Fxy and Fyx) are completely independent from any variable but

the lattice parameters and therefore can be used as the base for the analysis.

Following the same strategy adopted in the previous section, a gradient change

was applied in one of the 32 skew quadrupoles of the ALBA storage ring. The skew

quadrupole magnet QS08 was powered with increasing values of current and the

quantities Fxy and Fyx measured for 100 acquisitions for each current setpoint. A

proper observation of the coupling spectral lines required to increase the maximum

betatron amplitude to ∼ 1.2mm and ∼ 1.8m, respectively for the horizontal and

vertical plane (that correspond to an action Jx=0.88 µm and Jy=1.5 µm or to an

average amplitude of ∼ 1.0mm for both planes).

A variation vector analogous to ~∆ has been calculated for each line and every

different magnet strength:

~∆Fxy = F 0
xy − Fnxy

~∆Fyx = F 0
yx − Fnyx,

(7.10)
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where the superscript 0 identifies the reference measurement performed with QS08

switched off, while the superscript n refers to any other configuration where QS08

was on.

Figure 7.7 shows the phase and amplitudes of Fxy and Fyx measured with

QS08 excited with a current of 8A: simulated and measured data agree within

the experimental uncertainty. As in the case of the quadrupolar change, we fit

the strength of QS08 from the experimental data by means of the singular value

decomposition technique.

The fit results for each different excitation strength of QS08 are presented in

Fig. 7.8: the agreement between measurements and model is still present, but

there is a constant discrepancy of around 10 %. The origin of such mismatch is not

clear, but most likely it is to be attributed either to a miscalibration of the magnet

response to the excitation current or to the presence of a linear optics error at the

position of the skew magnet.

As a final test the fit is extended to all the 32 skew quadrupoles present in the

storage ring. The result plotted in Fig. 7.9 shows that the simple singular value

decomposition is able to properly identify the source of coupling.

7.2.2. Non-linear optics

As discussed in Section 1.2 sextupoles are mainly responsible for four different

spectral lines: two lines for the horizontal plane (Fns2 and Fns3) and two for the

vertical one (Fns0 and Fns1) with frequency defined by combinations of the hori-

zontal and vertical tunes. To facilitate the observation of the non-linear spectral

lines, the pinger strength was increased in order to produce a maximum betatron

amplitude of ∼ 2.4mm and ∼ 3.6mm, respectively in the horizontal and vertical

plane (that correspond to an action Jx=3.5 µm and Jy=5.9 µm or to an average

amplitude of ∼ 2.0mm for both planes). Similarly to the case of coupling, the

spectral lines have been properly renormalized by the tune lines to remove any

dependency on the dynamical variables and obtain a signal that depends only on

the lattice parameters.

The results of the experimental observation of the amplitude and phase for each

one of the four sextupolar spectral lines averaged over 100 acquisitions is presented
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Figure 7.7. Upper and lower plots shows respectively the variation of
amplitude and phase of the spectral lines Fxy and Fyx for a change in
current of the skew quadrupole QS08 of 8A. value. The solid lines represent
the one-sigma uncertainty due to acquisition to acquisition fluctuations,
while the dashed black lines, that follow closely the experimental results,
show the theoretical value obtained from simulation.
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Figure 7.8. Results of the fit of QS08 using the spectral lines Fxy
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discrepancy of around 10% is always visible.

in Figs. 7.10 and 7.11: the measurements follow within the statistical error the

theoretical values predicted by simulations.

To study the sensitivity of the measurements to single source of sextupolar

error, an experiment similar to what already done in the case of quadrupoles and

skew quadrupoles was carried out. Unfortunately the particular arrangement in

families of the sextupoles in the ALBA storage ring required a special setup in

order to detune one single magnet. In fact in each family, sextupoles are powered

in series by a common current power supply, preventing from tuning individually

a single magnet. To work around the problem, a resistive shunt was installed in

one individual sextupole (SH02 in sector 7) to decrease its strength. Nevertheless,

since the exact value of current flowing through the resistor was known only ap-

proximately, a precise comparison against the theoretical model, as done previously

for quadrupoles and skew quadrupoles, was not possible.

Figure 7.12 shows the results of the fit based on the same singular value de-

composition procedure used in the previous cases. The single error source stands



110 7. MEASUREMENT AND CORRECTION OF LATTICE ERRORS

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  50  100  150  200  250

F
it
te

d
 e

x
c
it
a
ti
o
n
 c

u
rr

e
n
t 

[A
]

Skew quadrupole magnets position [m]

Expected error
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out clearly above the noise floor even without applying the Tikhonov regularization

or a truncation in the singular value decomposition.
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Figure 7.10. Amplitude and phase of the spectral lines Fns0 and Fns1 averaged
over 100 acquisitions. The solid lines represent the one-sigma uncertainty due to ac-
quisition to acquisition fluctuations, while the dashed black lines that follow closely
the experimental results, shows the theoretical value obtained from simulation.
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Figure 7.11. Amplitude and phase of the spectral lines Fns2 and Fns3 averaged
over 100 acquisitions. The solid lines represent the one-sigma uncertainty due to ac-
quisition to acquisition fluctuations, while the dashed black lines, that follow closely
the experimental results, show the theoretical value obtained from simulation.
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CHAPTER 8

Measurement of errors due to transverse

impedance

In this chapter we investigate how the turn-by-turn optics measurements pre-

viously described can be applied to study transverse coupling impedance sources

in a storage ring.

The electromagnetic interaction between a charged beam and the vacuum

chamber excites of an electromagnetic field: the wakefield. Such wakefields al-

low a long range interaction that couples not only the motion of particles within

the same bunch but also the motion of different bunches. This coupling mechanism

can lead to beam instabilities, especially at high value of bunch charge where the

generated wakefileds are stronger, eventually limiting the maximum allowed stored

current in the ring [17].

In the case of ALBA, a past theoretical study [25] shows how the contribu-

tion of the transverse impedance sources adds up, resulting in a maximum current

threshold of ≃ 20mA (at zero chromaticity). To relieve the problem and allow for

higher currents to be stored, ALBA rely on a combination of different approaches:

An active transverse feedback [36] to damp the instabilities, increased value of

chromaticity (Landau damping) and using a special filling pattern with long gaps

between train of bunches that allows the wakefields to extinguish.

This solution allows to operate the storage ring on a regular basis with a stored

current of 150mA with a large stability margin that would allow to increase easily

the current. On the other hand, in a young machine such as ALBA, the frequent

requests for the design and installation of new hardware (e.g. insertion devices or

diagnostic devices) brings continuously renewed attention to the problem.

The study of impedances of new vacuum chamber components constitutes a

delicate task that steps through many different challenges, involving the correct

115
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Figure 8.1. Two relativistic charges travels parallel through an
accelerator component displaced by a longitudinal distance s. The
first one, the source particle, excite an electromagnetic field in the
surrounding structure, the field couple to the trailing test particle.

characterization of the electromagnetic properties of complex materials, as multi-

layer materials and coating and the electromagnetic computer simulation of the

different structure geometries. Therefore the ability of measuring directly the con-

tribution of impedance sources generated by the different vacuum chamber elements

provides a valuable tool not only to validate the results of such complex design pro-

cess, but also to directly characterize the behavior of such materials, as in the case

of multilayer structures that otherwise would be difficult to model with a more

traditional analytical or numerical approach.

Beam position monitor turn-by-turn analysis for impedance characterization

has been usually employed in large circumference machines [9, 16, 13, 12], while

synchrotron light sources have mainly used slow orbit based techniques. On the

other hand the quality of the measurement demonstrated in the previous chapters

suggests that the turn-by-turn technique can be applied succesfully to measure the

typically small impedance values of a modern light source.

8.1. Transverse coupling impedance

A schematic representation of the wakefield-particles interaction is provided in

Fig. 8.1. A particle (source charge) travels through the device under investigation

exciting a wakefiled. A second trailing particle (the test charge) follows the source

charge separated by a distance s on a parallel trajectory. A force acting on the test

particle is observed due to the interaction with the wakefield.
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The interaction has a longitudinal and a transverse component, since only the

first one affects the transverse beam dynamics, making the phenomenon detectable

by means of the turn-by-turn technique described in the previous chapters, the

longitudinal component has not been considered in this work.

Indeed the problem that we aim to solve is more complicated, involving a whole

bunch of particles, where each one acts at the same time as the source and the test

particle. To study the generic case of a complex charge distribution we proceed by

calculating the effect induced on the test particle by a point like source charge or

the ”impulse response” of the system. Hence, the cumulative effect is determined

by doing a convolution between the bunch charge distribution and the impulse

response that acts as a Green’s function.

In the ultrarelativistic case, the integrated transverse kick exerted by a point-

like source charge on a test particle moving parallel to the longitudinal direction ẑ

can be expressed trough the transverse wake function, defined as:

(8.1) w⊥(~rs, ~rt, s) =
c

e

∫ ∞

−∞
[ ~E + cẑ × ~B]zt=zs+sdt

Where, ẑ is the versor of the longitudinal axis, ~rs and ~rt are the transverse displace-

ments of the source and test particles, while their longitudinal coordinates are zs

and zt respectively. The fields ~E and ~B in general have a complicated dependency

on the boundary conditions defined by the geometry of the surrounding and by the

particles coordinates.

In a system with reflection symmetry around the axis of motion of the bunch,

as in most of the vacuum chambers employed in accelerators, the wake function

w⊥(~rs, ~rt, s) is null on the axis of symmetry and increases moving away from it.

The result is a gradient in the force that happens to be always defocusing in both

transverse planes.

The above wake-field represents the Green’s function (impulse response of the

of the system) we are looking for and therefore can be used to calculated the

cumulative wake-field produced by an arbitrary longitudinal bunch distribution

ρ(s) as follows:
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(8.2) W⊥(~rs, ~rt, s) =

∫ ∞

−∞
ρ(s− s′)w⊥(~rs, ~rt, s

′)ds′.

Finally we obtain the average transverse kick received by the bunch interacting

with the wakefield as:

(8.3) Θ =
Ne2

E0
~rs

∫ ∞

−∞
ρ(s)W⊥(~rs, ~rt, s)ds.

The assessment of w⊥ for a given geometry represents a very complicated prob-

lem by its own and will not be addressed in this context. However, since it is usually

preferable to solve such problem in the frequency domain, it is common to express

the wake field w⊥ trough its Fourier transform Z⊥ that happen to have the dimen-

sion of Ω/m and is commonly referred as the ”impedance”:

(8.4) Z⊥(ω) = − i

c

∫ ∞

−∞

∂w⊥(~rs, ~rt, s)

∂rs
e−iωs/cds.

Following the same path as before we proceed defining a quantity, this time in

the frequency domain, that takes into account the contribution of the whole bunch

distribution: the effective impedance Zeff
⊥ .

(8.5) Zeff
⊥ =

∫∞
−∞ Z⊥(ω)S(ω)dω
∫∞
−∞ S(ω)dω

,

where S(ω) represents the spectrum of the bunch charge density. Using the defini-

tion of Zeff
⊥ the kick produced by an impedance source now is written as:

(8.6) ∆K =
dΘ

drs
= −Npq

2

E0
Im(Zeff

⊥ )

∫ ∞

−∞
ρ(s)2ds,

which, specialized for the case of a Gaussian distribution of particles that resembles

closely the longitudinal particle distribution in a bunch of electrons stored in a

synchrotron, provides:

(8.7) ∆Kx,y = −Npq
2

E0
Im(Zeff

x,y)
1

2
√
πστ

,

where στ is the standard deviation of the Gaussian distribution (i.e. the bunch

length). ∆Kx,y represents a defocusing kick similar to the one produced by a
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Figure 8.2. Betatron functions and location of the major transverse
impedance sources in the ALBA storage ring. Insertion devices and the
four kickers of the injection section accounts for the most of the overall
impedance. Also the standard vacuum chamber, not represented in the
picture, that extends all around the machine provides a strong contribu-
tion.

quadrupole (but defocusing on both planes). Note that for asymmetric structures

the defocusing kick has different strength on the vertical and horizontal planes.

8.2. Impedance sources in the ALBA storage ring

All the elements contribute to the transverse impedance budget in a modern

synchrotron light source, among them the insertion devices stand out, that requiring

the beam to pass through a very narrow vertical aperture results in a strong wake-

fields. Another important source of impedance is represented by the multilayer

structures used in vacuum chamber the case of pulsed magnets, usually made of

ceramic coated with a layer of metal, or by getter coated vacuum chambers, vastly

used in modern synchrotron light source to supplement the vacuum system wherever

other traditional means of pumping could not be employed, as in the case of ID

vacuum chamber where the lack of space does not allow to install pumping ports.

On the other hand, it is important to note that not only the impedance strength

and therefore the resulting defocusing gradient but, also the betatron function plays
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an equally important role in defining the overall optical functions distortion that

we aim to measure (Eq. 1.64). This is particularly true in the case of insertion

devices that usually are located where the beam has the minimum transverse cross

section, while the opposite is true for the injection pulsed magnets.

A schematic view of the ALBA storage ring including the main sources of

impedance along with the betatron functions is depicted in Fig. 8.2. As in many

electron synchrotrons the strongest effect is observed in the vertical plane while no

major contribution is present on the horizontal one. This asymmetry is due to the

elliptical vacuum chamber, wider on the horizontal plane to allow the extraction of

the synchrotron radiation, that is commonly employed in this kind of machine. Also

the IDs, because of the ”flat” geometry do not produce a significant effect on the

horizontal plane. In the case of ALBA such asymmetry is extremely pronounced

therefore the horizontal plane has not been considered in this study.

The main impedance contributors in the ALBA storage ring (Fig. 8.3) include

6 insertion devices (IDs) of which 3 use flat NEG coated aluminum chambers, 2 are

in-vacuum undulators (IVUs) and one is a superconducting wiggler (SCW). The

injection section, that includes 4 kickers with ceramic vacuum chambers coated

with a 0.4m layer of titanium [35], is also an important source of impedance and

along with the standard beam pipe of the entire ring. IDs, kicker magnets and

standard beam pipe account for most of the total transverse impedance budget.

A further strong source of impedance is provided by the vertical beam scraper

(Fig. 8.4) located in the injection section. During normal operation this element

does not contribute significantly, being placed far away from the beam (during

normal operation the two jaws of the scraper are placed at ±4.75mm from the

beam which means 9mm full gap), on the other hand the ability to change its

aperture and so to modulate its impedance contribution is of particular interest for

this study, allowing to observe the optical functions distortion produced by a single

impedance source.

A comprehensive list of the main impedance sources of the ALBA storage ring

is presented in table 8.1 along with the produced defocusing kick per stored current

obtained from computer simulations using the code GdfidL[5]. The listed values
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(a)

(b)

Electron beam

     channel

Ante-chamber

(c)

Figure 8.3. The three main contributors to the ALBA impedance budget.
Similar devices are found in many synchrotron light sources. A) A titanium
coated alumina vacuum chamber used in pulsed magnet of the beam injection
system. B) The impedance of an in-vacuum insertion device depends on the
jaws position. During normal operation gaps up to 6mm are allowed resulting
in a noticeable impedance. C) the standard flat vacuum chamber represents
one of the strongest contributor to the overall storage ring impedance.

include the device and the nearby transition elements of the vacuum chamber like

absorbers, tapers, etc.

8.3. Measurement setup

Before engaging in the proper transverse impedance measurement, it is impor-

tant to understand the required level of precision in order to allow the observation

of the tiny optical distortion due to a impedance source of the order of magni-

tude typical of the ALBA storage ring. For this purpose we can take advantage of

the experience gained with the measurements and correction of errors presented in

Chapter 7. In fact the quadrupole QH01, used in the previous study, happens to be
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Beam

Beam pipe

Top jaw

Figure 8.4. The top jaw of the vertical scraper. The scraper is
made of two opposing copper jaws, that close one against the other
in order to limit or stop (absorb) tha passage of the beam. During
normal operations the jaws are closed symmetrically to ±4.75mm
from the beam.

Table 8.1. ALBA storage ring vertical impedance budget and
defocusing kicks per stored current. Standard beam pipe refers
to the overall contribution of the standard vacuum chamber used
in most part of the machine. The IVU value corresponds to the
minimum gap configuration(6mm), while being negligible at full
open position. The contribution of the vertical scraper has been
characterized for different gaps other than the nominal position at
±4.75mm. In all cases the jaws aperture was kept symmetric with
respect to the beam.

Element Impedance [kΩ/m] Kick [1/(A ·m)]
Injection section 25.3 0.098
IVU 38.2 0.147
NEG-coated Al-chamber 31.2 0.120
Superconducting wiggler 14.6 0.056
Standard beam pipe 105.6 0.404
Scraper ± 4.75mm 10.6 0.041
Scraper ± 3.0mm 24.1 0.093
Scraper ± 2.5mm 38.4 0.148
Scraper ± 2.0mm 59.5 0.230

positioned next to the injection section, therefore resulting in an optical distortion
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that mimics very well the one expected from a transverse impedance source located

at this position.

The same analysis carried out in Chapter 7 based on the observation of the

phase advance among consecutive BPMs ψ†
y was repeated, but in this case by ad-

justing in the fit the strength of the quadrupole QH01 only (the betatron function

β̄y was excluded from the analysis because of the strong systematic error found in

the betatron amplitude observations, as it will be shown in the next section). The

results are plotted in Fig. 8.5, where an almost constant statistical r.m.s. fluctu-

ation of ∼ 1.1× 10−4 m−1 is evidenced for each setpoint of QH01, value that has

to be compared against the defocusing gradient introduced by a typical impedance

source.

In order to enhance the defocusing force of the impedance sources under inves-

tigation, the amount of charge stored in each bunch has to be maximized. Because

in the ALBA storage ring values of bunch charge higher than 8 nC would drive the

beam unstable, a value of 5 nC per bunch was chosen as a safe value to carry out

the measurements.

Given such amount of charge, in the case of the injection section the expected

integrated defocusing strength of around 5× 10−4 m−1, that corresponds to five

times the noise level.

On the other hand in order to explore the main impedance contributors found

in Tab. 8.1, a smaller experimental uncertainty respect to what was observed

for QH01, would be advisable. For this reason the number of acquisitions for

each measurement was increased from 100 to 500, reducing the statistical error

by a factor
√
5 with respect to what is observed in Fig. 8.5. Note that a higher

number of acquisitions would lead to other problems, as for instance the effect of the

stored current decay in the ring during the measurements, which are enhanced when

operating the machine at high charge per bunch and the risk to come across slow

thermal drifts. Running the acquisition system at 3Hz, the whole measurement

process lasts less than 3 minutes and causes a stored current drop of less than 5%,

which is acceptable for our purposes.



124 8. MEASUREMENT OF ERRORS DUE TO TRANSVERSE IMPEDANCE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

∆QH01 = -1% ∆QH01 = -0.5% ∆QH01 = -0.2% ∆QH01 = -0.1%

D
e
fo

c
u
s
in

g
 K

ic
k
 S

tr
e
n
g
th

 [
1
0

-3
/(

m
)]

QH01 Error

Measurements
Model

Figure 8.5. In red, measured change in the focusing kick for dif-
ferent QH01 setpoints. Each measurement is obtained averaging
over datasets containing 100 acquisitions each. The error bars rep-
resent the standard deviation of the estimated focusing kick due to
the acquisition to acquisition fluctuations. In black, the expected
kick based on magnetic calibrations.

8.4. Test with a scraper device

A scraper with variable gap provides a good benchmark to verify the quality of

the measurement method by varying a single and well localized impedance source.

In particular this test allowed a direct comparison of the reproducibility of the β̄y

and ψ†
y observations, highlighting the superiority of the latter.

As observed in the previous section, measurements have to be carried out using

a large amount of charge per bunch in order to enhance the optical distortion

induced by impedance sources. For this purpose a special filling pattern containing

only two high charge bunches was used. An example of the actual filling pattern

is shown in Fig. 8.6. The ability to directly observe the stored filling pattern has

been a valuable tool, in fact because of the frequent injections required to keep up
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Figure 8.6. The two different filling patterns used during the
impedance measurements of the scraper. A low charge per bunch
filling pattern (left), similar the one used in all the previous mea-
surements, composed by a train of 45 bunches, each one with a
current of 0.22mA on average. A high charge per bunch filling
pattern (right) composed by only two bunches carrying around
4.9mA each. The total current for the two filling pattern is ap-
proximately the same in order to produce a similar signal in the
BPM and minimize any effect related to the different response of
the BPM receivers to different signal strength.

with the strong beam losses, the risk of spoiling the filling pattern by injecting in

a wrong bunch was high.

An optical measurement has been repeated for different apertures of the ver-

tical scraper (6, 5 and 4mm) plus a reference one at the nominal scraper position

(9.5mm). The measurements have been carried out following the same procedure

described in Chapter 7 but with an increased number of acquisitions to 500.

The measurement with nominal scraper aperture (±9.5mm) was taken as a

reference, hence a beta-beat function ∆β̄y and phase-beat function ∆ψ† calculated
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as:

∆β̄y = β̄0
y − β̄1

y

∆ψ†
y = ψ†0

y − ψ†n
y ,

(8.8)

where the index 0 stands for the reference measurement while n identify any other

measurement carried out at different scraper positions (6, 5 and 4mm). Then the

same fit procedure was used as before to distinguish the vertical defocusing kick

produced by the scraper impedance for each different gap.

Special attention was paid to keep the stored current decay fairly equal during

the acquisitions of all the different data-sets, guaranteeing a good cancellation of

the contribution due to any other impedance source except the scraper itself. In

fact a difference in current between the two measurements would introduce also a

beating due to any other impedance source aside from the scraper.

The measured defocusing kicks produced by the scraper obtained separately

trough the fit of the observables β̄y or ψ†
y are presented in Fig. 8.7. The plot shows

how the results obtained trough the fit of ∆ψ† follow much better the model value

from Table 8.1 than the ones obtained from the fit of ∆β̄y. In order to investigate

the issue, the measured ∆β̄y and ∆ψ† have been plotted (Fig 8.8) together with the

values obtained from a simulation of the storage ring lattice, where a defocusing

error with strength equal to the one obtained from the fit, was placed at the injection

section. The measured ∆ψ† appears to follow more tightly the simulated value than

what observed in the case of ∆β̄y. A quantitative evaluation of the mismatch is

provided by the χ2 test, that, as shown in the plot, in the case of ∆β̄y is found to be

15 times higher than for ∆ψ†. The different behavior is probably to be attributed

to the intrinsic different nature of the two observables: while phase measurements

are essentially time measurements, therefore requiring only a very clean and stable

source of clock for the BPM to provide reliable results, amplitude measurements

depend strongly on the calibration accuracy and stability of each one of the four

BPM channels that could have some minor drift during the long time required to

carry out the measurement. In fact the
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Figure 8.7. Measured and model change in the defocusing kick
per current unit due to the transverse impedance of the vertical
scraper for different gaps with respect to the scraper at reference
aperture (9.5mm). In red and blue, the values obtained from a
fit of the quantities ∆β̄y or ∆ψ†. Each measurement is obtained
averaging over datasets containing 500 acquisitions each. The error
bars represent the standard deviation of the estimated focusing
kick due to the fluctuations among acquisitions. In black, the
predicted values from the impedance computation calculated as
kick differences of the considered gap to the reference scraper gap.
While the fit of ∆ψ† (in red) follows the theoretical results (in
black) the measurements based on the observation of ∆β̄y (in blue)
show a discrepancy up to 47%.

Because of the poor results observed with the betatron amplitude measure-

ments, the results presented in the rest of the work rely solely on the observation

of the phase ∆ψ†
y.

8.5. Local transverse impedance measurement

In this section we aim to fit the most important contributors to the overall

ALBA impedance. For this purpose a phase-beat measurement is performed by

repeating optics observations for two different bunch charges.
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Figure 8.8. Measured ∆ψ†
y (top) and ∆β̄y (bottom) for each

BPM along with the results obtained from a simulation of the
storage ring lattice, where a defocusing error was placed at the in-
jectction section with strength equal to the one obtained from the
fit. The value of the χ2 is also shown, highlighting the superiority
of the phase-advance measurments.

The scraper position was set to the nominal value and the gap of each IVU was

open to the maximum to reduce their impedance contribution to a negligible value.

Data were acquired using two different filling patterns with high and low charge

per bunch as shown in Fig. 8.6. The phase-beat function ψ†
y is now defined from

the previous measurements as:

(8.9) ψ†
y = ψ†low

y − ψ†high
y
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Figure 8.9. Measured phase beat for each BPM along with the
one computed from the nominal machine model including the two
measured defocusing kick produced by the beam pipe and the in-
jection section.

hereafter the analysis follows the same path as in the previous cases. This time

all the elements in Tab. 8.1 (except the IVUs and the scraper that were kept open)

are expected to contribute with a kick.

Figure 8.10 shows the result of the analysis including the two strongest impedance

sources: the injection section and the beam pipe. The fit is limited here to these

two elements as the effect of the low-gap chambers of the IDs is actually small due

to the rather low beta-function at their location (Fig 8.2). A crosscheck of such

assumption is due.

The proof is provided by the measurement of the tune shift ∆Qmeas induced

by the bunch charge, which can be expressed as:

(8.10) ∆Qmeas = ∆Qfit +∆Qnot-fit

where ∆Qfit corresponds to the tune shift induced by the two fitted impedance

sources (beam pipe and injection section) and ∆Qnot-fit is the tune shift produced

by all the impedance sources not accounted by the fit.

A satisfactory agreement was found as the tune measurement revealed a tune

shift ∆Qmeas = −2.3 ·10−3 where a value ∆Qfit = −1.8 ·10−3 was inferred from the

two fitted impedance sources, leading to a discrepancy of around 22%, confirming

that most of the coupling contributors have been correctly taken into account by

the impedance model.

The discrepancy between the left and right hand side of Eq.(8.10) gets smaller

if we consider also the impedance sources that have not been included in the fit



130 8. MEASUREMENT OF ERRORS DUE TO TRANSVERSE IMPEDANCE

that all together provide still a not completely negligible contribution. Adding up

the tune shift induced by all the elements presented in Tab. 8.1 except the IVUs,

which where opened to the maximum gap, the beam pipe and the injection section,

already considered by the fit, we obtain an overall tune shift ∆Qnot-fit = −0.46·10−3,

reducing the discrepancy to 2%.

The observed phase-beat is plotted in Fig. 8.9 along with the one computed

from the nominal storage ring model including the two fitted impedance sources.

Even if the agreement between the experimental and the computed curve is not

excellent the fitting procedure is still able, by averaging the information from each

BPM, to extract the strength of the two impedance sources with a good level of

agreement with respect to what expected from the electromagnetic simulation of

Tab. 8.1.
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Figure 8.10. In red, the defocusing kick strength per current unit
obtained from the fit including the beam pipe and the injection
section. Each measurement is obtained averaging over datasets
containing 500 acquisitions each. The error bars represent the
standard deviation of the estimated focusing kick due to the fluc-
tuations among acquisitions. In black, the predicted value from
the impedance computation.
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The agreement between the measurements and the values obtained by the

impedance computation confirms that the machine impedance model is sound and

well understood (see Ref. [26]). In particular, it is shown that the actual impedance

model of the Ti-coated ceramic chambers, of which four are located in the injection

section, is about correct.

8.6. Impedance of an in-vacuum undulator

The vertical impedance provided by the small-gap chambers and IVUs are a

priori stronger than the other vacuum chamber contributions, however the small

values of the vertical betatron function of the ALBA nominal lattice at their position

(Fig 8.2) distinctly mitigate their effect (Eq. 1.64).

In order to amplify the effect on the optics and gain sensitivity for its impedance

measurement, the nominal lattice has been detuned at the location of one of the

IVUs increasing the vertical beta function by a factor 5.2 (see Fig. 8.11 and Ref.
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Figure 8.11. Vertical betatron functions for the nominal and
modified ALBA lattices. The vertical betatron function is in-
creased from 1.2m to 6.5m at the location of one IVU.
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Figure 8.12. Measured phase beat for each BPM along with the
one computed from the high βv model including the three measured
defocusing kicks produced by the beam pipe, the injection section
and the IVU located at the high vertical beta position.

[24]), resulting in an increase of the phase beating due to the defocusing kick

induced by the impedance.

Performing the same measurements of the phase beat described in the previous

section (Fig. 8.12), but in this case using the lattice with high vertical beta at the

IVU, allows to characterize its impedance. The gap of the insertion device was

closed to 6mm, and the same procedure used in the previous case was repeated.

Figure 8.13 shows the results of the analysis including the defocusing kick produced

by the insertion device impedance along with the one of the injection section and

the beam pipe. The measurement results for the injection section and for the beam

pipe are consistent with the previous analysis, while the effect of the insertion device

is estimated with an even smaller statistical error, that makes the 20% discrepancy

with respect to the theoretical predictions not negligible. On the other hand the

phase beat fit (Fig. 8.12) shows a good agreement confirming the reliability of the

measurement.

Since measurements and computations are supposed to be affected by very

different error sources, the observed discrepancy allows to set a limit on the overall

measurement uncertainty, including all the systematic errors that would be barely

estimated otherwise. The most significant disagreement between measurement and

simulation is found in the case of the IVU, exhibiting an overall kick discrepancy

of ΣK = 0.029 (Am)−1 equivalent to a transverse impedance of 7.6 kΩ/m (20% of

the model value of 38.2 kΩ/m). On the other hand, since the phase beat induced

by an impedance source is proportional to the beta value, a better error estimation
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is obtained by multiplying the kick error by the beta, βΣK = 0.19A−1 equivalent

to a β-weighted transverse impedance of 49 kΩ.

8.7. Measurement Limits and Possible Improvements

In order to characterize smaller impedance contributors an improved sensitiv-

ity and a reduction of noise and systematic errors is desirable. In this section

we propose a few options to improve the overall measurements quality, which for

technical limitations of the present ALBA experimental setup could not be tested.

Nevertheless we think that it would be beneficial for machines equipped with more

advanced hardware [37, 6].
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Figure 8.13. In blue the defocusing kick strength per current
unit obtained from the fit including the beam pipe, the injection
section and the IVU located at the high vertical beta spot. Each
measurement is obtained averaging over datasets containing 500
acquisitions each. The error bars represent the standard deviation
of the estimated focusing kick due to the acquisition to acquisi-
tion fluctuations. In black the predicted value from the impedance
computation while red bars represent the defocusing kick obtained
from the previous measurement (Fig. 8.10) where the nominal
lattice was employed.
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Two main factors were identified as the main source of measurement uncer-

tainty: fast optics fluctuations, due to the electric noise in the quadrupoles power

supplies; and slow machine drifts, likely due to the different thermal loads on the

machine components produced by the different filling patterns.

Having identified the main sources of error, we can proceed to analyze possible

solutions. Regarding machine drifts related with filling pattern, a possible cure

could be found by storing together a high and a low current bunch trains in a hybrid

filling pattern fashion. In this configuration there would be no need anymore to

switch from one filling pattern to the other, avoiding thus different thermal loads in

the machine. Moreover, avoiding the injection of a different filling pattern between

acquisitions would result in the beneficial side effect of speeding up the measurement

process, reducing also the effect produced by any other slow machine drift unrelated

with the change in filling pattern. To discriminate the signal produced by only one

of the two trains, BPMs with sub-turn resolution are needed. Unluckily the radio-

frequency front-end employed in the BPM system of ALBA does not meet such

requirements, preventing us from testing this option.

Since the employed BPM system does not provide any way to isolate the sig-

nal produced by each one of the two trains, a way to disentangle the two signals

downstream is required. An option is provided by the small tune shift due to the

optic distortion itself produced by the transverse impedance. In this case the two

signals are acquired simultaneously and separated afterward by means of spectral

analysis. In this approach BPM with sub-turn resolution are not required, instead

very good linearity is mandatory. A first attempt to apply the proposed techniques

at ALBA did not deliver the expected results.



Conclusions

The goal of this thesis is to test and validate the turn-by-turn beam position

measurement technique applied to the study of the linear and non-linear beam

dynamics in third generation of synchrotron light sources, in particular at ALBA,

where the turn-by-turn acquisition and analysis chain was needed from scratch.

First, an approximated analytical representation of the linear and non-linear

transverse beam dynamics, derived by means of a perturbative approach, was im-

plemented in a first place as a Matlab routine and subsequently as part of the

Elegant accelerator simulation software. This allowed for a fast computation of

the non-linear transverse beam motion (an improvement of more than one order of

magnitude on the execution speed was observed respect to tracking). The predic-

tion obtained with the approximated formulas agrees with numerical simulations

(tracking) within a 0.1%.

Regarding the acquisition system, the major limitation is located in the BPM

electronics by the turn-smearing problem. In light sources like SOLEIL, no other

solution than compensating the smearing through a deconvolution technique was

possible. Instead, a different approach was followed at ALBA, where the firmware

employed by the BPM electronics has been replaced with a new one (MAF) designed

specifically for turn-by-turn applications, this procedure involved a great deal of

work requiring to understand in depth the BPMs internals. This approach allowed

indeed for better quality data, on the other hand the incompatibility between MAF

and standard firmware (required for slow orbit acquisition) prevented from taking

advantage of the turn-by-turn measurements during normal machine operation.

The turn-by-turn data acquired in the experiments were treated using a novel

optimized spectral analysis procedure developed in this thesis. It is based on the

approach proposed by Laskar, but extended to take into account also the damping.

135
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The spectral components of the transverse beam motion, due to the different lattice

elements, were isolated and studied using the first-order approximated formulas.

The experimental work was articulated through several tests. A first set of

measurements was dedicated to the characterization of the linear lattice. The mea-

surements show a level of agreement (β-beat < 2%), with respect to the nominal

values, comparable to what observed with LOCO (β-beat < 1%). Further tests to

establish the ultimate sensitivity to small optical functions variations were obtained

by manipulating single lattice elements and measuring the resulting optics varia-

tions. The tests, carried out at ALBA and SOLEIL, showed how a ∼1% quadrupole

strength variation (with respect to the nominal quadrupolar strength) can be lo-

calized with a similar degree of accuracy to what is observed with LOCO. This

limitation stems from the large number of quadrupoles and their close placement

that makes it difficult to disentangle correctly the contribution of each magnet.

Turn-by-turn technique has also been applied to the characterization of coupling

and non-linear lattice elements (sextupoles) in the ALBA light source. The ability

of turn-by-turn to correctly localize a single source of coupling was challenged by

introducing in the storage ring lattice a controlled coupling source. A high degree of

precision was observed in localizing the error source, and only a 10% disagreement

between measurements and theoretical predictions on the coupling source strength

was observed.

A similar test was also carried out for the sextupole families using a resistive

shunt to change the excitation current of a single element. The ability to localize

the sextupolar error position in the lattice was successfully demonstrated.

The experiments showed how the turn-by-turn acquisitions shine as for sensi-

tivity,/ enabling the detection of very small variations of the optics function. This

made it possible to apply the turn-by-turn technique, for the first time in a light

source, to the measurement of localized transverse impedance sources. The exper-

iment, carried out in the ALBA storage ring, led to the characterization of the

individual defocusing effects produced by different transverse impedance sources,

including elements like scraper, injection zone, in-vacuum undulator and standard

vacuum beam pipe. The good agreement between the measurements and the trans-

verse impedance model based on analytical calculation of the resistive wall and
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GdfidL simulation of the geometrical impedance confirmed that the turn-by-turn

technique is a valid diagnostic tool to carry out very sensitive and non-intrusive

optics measurements. Furthermore it has been shown how the smaller impedance

sources can still be properly characterized by manipulating the machine optics in

order to obtain a magnification of the induced defocusing kick. This method has

been used to characterize impedances as small as the one of the ALBA IVUs.
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APPENDIX A

Spectral analysis of turn-by-turn data

This appendix deals with the problem of the precise determination of the main

spectral components of the turn-by-turn beam motion, described in Section 1.2.2,

from the experimental data measured with BPMs. Let xn a vector representing the

turn-by-turn horizontal or vertical beam position for N turns. The discrete Fourier

transform

(A.1) Fq =
N−1
∑

n=0

xne
2πıqn/N

provides a very general approach to the problem of the spectral analysis. The

frequency of the main spectral components can be easily identified, being the ones

with strongest amplitude, and consequently amplitude and phase of each spectral

line estimated. Once a list of the main spectral components has been filled out, it

is easy to associate every spectral line with the ones exhibiting closest frequency to

the lines predicted by the theoretical model (see Tab. 1.1).

On the other hand the spectral decomposition produced by the discrete Fourier

transform has an intrinsic frequency resolution limited to 1/N , far from being sat-

isfactory for our purpose. A strong improvement is obtained by taking advantage

of the knowledge of the structure of the turn-by-turn signal. In fact by providing

a model of the expected signal that depends only on a small set of unknown pa-

rameters it is possible to proceed by optimizing such parameters in order to fit the

measured turn-by-turn signal. Such approach produces a very precise amplitude

and phase estimations. Looking at Tab. 1.1 in Section 1.2.2 we find out that the

beam transverse motion can be decomposed in a rather large set of spectral lines,

each one characterized by his own frequency, amplitude and phase leading to a

rather complicated and time consuming fit procedure. On the other hand, taking

advantage of the larger amplitude of the tune lines with respect to any other line,

it is possible to proceed in a two steps approach, were in a first phase only the

141
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tune lines are fitted neglecting the weaker ones. Because of the reduced amount of

parameters the fit is now carried out in a much shorter time, while the amplitude

disparity between lines still allows to produce a very accurate estimation of the

parameters of the tune lines despite the approximation.

Before proceeding to the evaluation of the weaker spectral lines, the contribu-

tion of the dominating tune lines has to be removed from the turn-by-turn signal xn.

In fact, as shown in Fig A.1, higher amplitude lines can mask or offset the weaker
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Figure A.1. Spectrum of the turn-by-turn horizontal transverse
motion in presence of sextupoles. The data have been obtained
from tracking, following the same procedure used in Fig 2.8, but
this time the high amplitude tune line H(1,0) has not been re-
moved. The result is an offset on the two faint sextupolar lines
H(0,2) and H(2,0). A correct evaluation of amplitude and phase of
the weaker lines requires to remove the contribution of the stronger
ones.

ones. This is obtained by defining a new ”purged” turn-by-turn signal defined as:

(A.2) Xp
n = xn −A0 · sin(2πnν0 + φ0),
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where A0 and φ0 are respectively the amplitude and phase of the tune line obtained

from the fit.

Now by exploiting the fixed relations between the tunes and the frequency of

skew quadrupolar and sextupolar lines shown in Tab. 1.1, it is possible to evaluate

amplitude and phase of these lines, without the need to establish again, with a time

consuming fit, their frequency.

The precise estimation of the frequency of every spectral line is obtained through

the largely used method developed by Laskar [30]. In this method the discrete

Fourier transform Fq is extended to continuous values of the frequency:

(A.3) F(ν) =

n=N−1
∑

n=0

xn · e−2πıνn/N .

The line frequency ν0 is then estimated by maximizing |F(ν)|2. A Hanning window

is also applied to the turn-by-turn position xn to reduce the truncation errors as

prescribed by Laskar.

The search for the maximum is operated using the Brent algorithm imple-

mented in the Gnu Scientific Library [7]. In order to speed up the process a first

guess of the line frequency is obtained from a discrete Fourier transform. For this

purpose the power spectrum |Fq|2 of the turn-by-turn position is calculated and

a second order interpolation is used to estimate the frequency of the spectral line

under investigation. The obtained initial guess is generally precise enough to reduce

the required number of iterations of the Brent algorithm to less than 3.

Once the frequency ν0 has been precisely determined, amplitude and phase are

calculated as
√

|F(ν0)|2 and atan
(

Im[F(ν0)]
Re[F(ν0)]

)

respectively.

Up to now the natural damping of the signal has not been considered in the

analysis, on the other hand the presence of damping, even if small, has two major

consequences on the analysis which are an incorrect estimation of the spectral lines

amplitude and a bad cancellation of the tune lines from the turn-by-turn position

when calculating the ”purged” signal.

In the case of small damping (as in the case of ALBA where a damping time

of about 3000 turns is observed for both planes) the previous estimation of the

frequency ν0 and phase φ0 of the tune lines is unaffected. Therefore we can proceed
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to evaluate the amplitude A0 and damping time τ0 of the tune line by fitting the

turn-by-turn position xn with the function

(A.4) Xn(A, τ) = A · sin(2πnν0 + φ0) · e−n/τ ,

where only the amplitude A and damping time τ are varied. The correct amplitude

and damping time estimation can now be used to calculate a new ”purged” signal

as:

(A.5) Xp
n = xn −Xn(A0, τ0).

Before proceeding with the estimation the skew quadrupolar line (that decay with

the same damping time as the tune line) the damping is removed from the ”purged”

signal, producing an ”undamped” signal:

(A.6) Xu
n = Xp

n · en/τ .

Amplitude and phase of the skew quadrupolar lines can now be calculated by

evaluating Eq. A.3 at the proper frequency and following the same procedure used

to evaluate amplitude and phase of the tune line.

Since the damping of the sextupolar lines is two times faster than the damping

of the tune line a second ”undamping” is operated. Therefore their amplitude and

phase is evaluated following the same procedure employed for the skew quadrupolar

lines.

Thus the full algorithm flow can be summarized as follows:

(1) A Fast Fourier transform followed by a second order interpolation is used

to produce a first guess of the the tune line frequencies.

(2) A precise frequency estimation for the tune lines is obtained by numeri-

cally maximizing Eq. A.3, where the frequency guess obtained at point 1

is used as starting point for the optimization.

(3) Amplitude and decay time are now fitted while keeping frequency and

phase fixed.
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(4) A ”purged” signal is created, by removing the tune line from the original

signal.

(5) The estimated decay time of the tune line is used to remove the damping

from the ”purged” signal by multiplying the signal by an inverse damping

law.

(6) Amplitude and phase of the coupling lines is estimated by evaluating

Eq. A.3 on each plane using the tune frequency of the other plane.

(7) Step 5 is repeated another time in order to evaluate higher order lines

that decay two times as fast as the tune line.

(8) Amplitude and phase of the sextupolar lines are estimated by evaluating

Eq. A.3 using the proper combination of tunes frequencies.

In order to speed up the analysis, the whole algorithm has been implemented

as a compiled code library using the computer programming language C (see An-

nex II). With such precaution it was possible analyzing in just a few minutes large

datasets comprising up to 500 acquisitions, each one containing 1000 turn-by-turn

beam position measurements for both planes. The library has been wrapped to

Matlab for easiness of use.





ANNEX I

Elegant Patch

Main routine of the Elegant simulation code patch. The new routine enables

the calculation of the first-order corrections to the transverse motion due to skew

quadrupoles and sextupoles in Elegant.

1 void computeSDrivingTerms (LINE LIST ∗beamline )

2 {

3

4 /∗ Skew quadrupole ∗/

5 std : : complex <double> f10010 , f10100 ;

6 /∗ Normal s extupo l e ∗/

7 std : : complex <double> f30000 , f12000 , f10200 , f01200 , f01110 ;

8 /∗ Skew Sextupole ∗/

9 std : : complex <double> f00300 , f00120 , f20100 , f20010 , f11010 ;

10

11 std : : complex <double> i i = std : : complex<double >(0 ,1) ;

12

13 double t i l t ;

14 double k2 ; /∗ k2 <− normal sext ∗/

15 double j1 , j 2 ; /∗ j 1 <− skew quad , j 2 <− skew sext ∗/

16 double s rc betax , s r c be tay ; /∗ betas where the source i s l o ca t ed ∗/

17 double obs phix , obs phiy ;

18 double s r c ph ix , s r c ph i y ;

19 double de l ta ph ix , d e l t a ph i y ; /∗ phase advance between source and

obse rvator ∗/

20 double qx , qy ; /∗ tunes ∗/

21

22 i n t count ;

23 i n t idx ;

24

25 ELEMENT LIST ∗ s r c p t r , ∗ obs pt r ;

26

27 qx = beamline−>tune [ 0 ] ;

28 qy = beamline−>tune [ 1 ] ;

29

30 i f ( beamline−>sDrivingTerms . f10010 == NULL) {

147
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31 beamline−>sDrivingTerms . f10010 = ( double (∗ ) [ 3 ] ) mal loc ( s i z e o f ( double

[ 3 ] ) ∗ beamline−>n elems ) ;

32 beamline−>sDrivingTerms . f10100 = ( double (∗ ) [ 3 ] ) mal loc ( s i z e o f ( double

[ 3 ] ) ∗ beamline−>n elems ) ;

33 beamline−>sDrivingTerms . f30000 = ( double (∗ ) [ 3 ] ) mal loc ( s i z e o f ( double

[ 3 ] ) ∗ beamline−>n elems ) ;

34 beamline−>sDrivingTerms . f12000 = ( double (∗ ) [ 3 ] ) mal loc ( s i z e o f ( double

[ 3 ] ) ∗ beamline−>n elems ) ;

35 beamline−>sDrivingTerms . f10200 = ( double (∗ ) [ 3 ] ) mal loc ( s i z e o f ( double

[ 3 ] ) ∗ beamline−>n elems ) ;

36 beamline−>sDrivingTerms . f01200 = ( double (∗ ) [ 3 ] ) mal loc ( s i z e o f ( double

[ 3 ] ) ∗ beamline−>n elems ) ;

37 beamline−>sDrivingTerms . f01110 = ( double (∗ ) [ 3 ] ) mal loc ( s i z e o f ( double

[ 3 ] ) ∗ beamline−>n elems ) ;

38 beamline−>sDrivingTerms . f00300 = ( double (∗ ) [ 3 ] ) mal loc ( s i z e o f ( double

[ 3 ] ) ∗ beamline−>n elems ) ;

39 beamline−>sDrivingTerms . f00120 = ( double (∗ ) [ 3 ] ) mal loc ( s i z e o f ( double

[ 3 ] ) ∗ beamline−>n elems ) ;

40 beamline−>sDrivingTerms . f20100 = ( double (∗ ) [ 3 ] ) mal loc ( s i z e o f ( double

[ 3 ] ) ∗ beamline−>n elems ) ;

41 beamline−>sDrivingTerms . f20010 = ( double (∗ ) [ 3 ] ) mal loc ( s i z e o f ( double

[ 3 ] ) ∗ beamline−>n elems ) ;

42 beamline−>sDrivingTerms . f11010 = ( double (∗ ) [ 3 ] ) mal loc ( s i z e o f ( double

[ 3 ] ) ∗ beamline−>n elems ) ;

43 }

44

45 idx = 0 ;

46 obs pt r = beamline−>e l em twi s s ;

47 whi le ( obs pt r ) { /∗ loop over each obse rvat i on po int ∗/

48

49 f10010 = f10100 = f30000 = f12000 =

50 f10200 = f01200 = f01110 = f00300 =

51 f00120 = f20100 = f20010 = f11010 = std : : complex<double >(0 ,0) ;

52

53 s r c p t r = beamline−>e l em twi s s ;

54

55 i f ( obs ptr−>pred ) {

56 obs phix = ( obs ptr−>twiss−>phix + obs ptr−>pred−>twiss−>phix ) /2 ;

57 obs phiy = ( obs ptr−>twiss−>phiy + obs ptr−>pred−>twiss−>phiy ) /2 ;

58 } e l s e {

59 obs phix = ( obs ptr−>twiss−>phix + beamline−>twiss0−>phix ) /2 ;

60 obs phiy = ( obs ptr−>twiss−>phiy + beamline−>twiss0−>phiy ) /2 ;

61 }

62
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63 whi le ( s r c p t r ) { /∗ loop over each source ∗/

64 k2 = j1 = j2 = 0 . ; /∗ get source s t r ength ∗/

65 switch ( s r c p t r−>type ) {

66 case T SEXT:

67 t i l t = ( (SEXT∗) s r c p t r−>p elem )−> t i l t ;

68 k2 = ( (SEXT ∗) s r c p t r−>p elem )−>k2 ∗ ( (SEXT ∗) s r c p t r−>p elem )−>

l ength ;

69 break ;

70 case T KSEXT:

71 t i l t = ( (KSEXT∗) s r c p t r−>p elem )−> t i l t ;

72 k2 = ( (KSEXT ∗) s r c p t r−>p elem )−>k2 ∗

73 ( (KSEXT ∗) s r c p t r−>p elem )−>l ength ;

74 break ;

75 case T KQUSE:

76 t i l t = ( (KQUSE∗) s r c p t r−>p elem )−> t i l t ;

77 j 1 = −((KQUSE∗) s r c p t r−>p elem )−>k1 ∗

78 ( (KQUSE∗) s r c p t r−>p elem )−>l ength ∗ s i n ( 2 . ∗ t i l t ) ;

79 k2 = ( (KQUSE∗) s r c p t r−>p elem )−>k2 ∗ ( (KQUSE∗) s r c p t r−>p elem )−>

l ength ;

80 break ;

81 case T SBEN:

82 case T RBEN:

83 t i l t = ( (BEND∗) s r c p t r−>p elem )−> t i l t ;

84 j 1 = −((BEND∗) s r c p t r−>p elem )−>k1 ∗

85 ( (BEND∗) s r c p t r−>p elem )−>l ength ∗ s i n ( 2 . ∗ t i l t ) ;

86 k2 = ( (BEND∗) s r c p t r−>p elem )−>k2 ∗ ( (BEND∗) s r c p t r−>p elem )−>

l ength ;

87 break ;

88 case T CSBEND:

89 t i l t = ( (CSBEND∗) s r c p t r−>p elem )−> t i l t ;

90 j 1 = −((CSBEND∗) s r c p t r−>p elem )−>k1 ∗

91 ( (CSBEND∗) s r c p t r−>p elem )−>l ength ∗ s i n ( 2 . ∗ t i l t ) ;

92 k2 = ( (CSBEND∗) s r c p t r−>p elem )−>k2 ∗

93 ( (CSBEND∗) s r c p t r−>p elem )−>l ength ;

94 break ;

95 case T CSRCSBEND:

96 t i l t = ( (CSRCSBEND∗) s r c p t r−>p elem )−> t i l t ;

97 j 1 = −((CSRCSBEND∗) s r c p t r−>p elem )−>k1 ∗

98 ( (CSRCSBEND∗) s r c p t r−>p elem )−>l ength ∗ s i n ( 2 . ∗ t i l t ) ;

99 k2 = ( (CSRCSBEND∗) s r c p t r−>p elem )−>k2 ∗

100 ( (CSRCSBEND∗) s r c p t r−>p elem )−>l ength ;

101 break ;

102 case T QUAD:

103 t i l t = ( (QUAD∗) s r c p t r−>p elem )−> t i l t ;
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104 j 1 = −((QUAD∗) s r c p t r−>p elem )−>k1 ∗

105 ( (QUAD∗) s r c p t r−>p elem )−>l ength ∗ s i n ( 2 . ∗ t i l t ) ;

106 break ;

107 case TKQUAD:

108 t i l t = ( (KQUAD∗) s r c p t r−>p elem )−> t i l t ;

109 j 1 = −((KQUAD∗) s r c p t r−>p elem )−>k1 ∗

110 ( (KQUAD∗) s r c p t r−>p elem )−>l ength ∗ s i n ( 2 . ∗ t i l t ) ;

111 break ;

112 de f au l t :

113 break ;

114 }

115

116 i f ( ! ( k2 | | j 1 | | j 2 ) ) {

117 s r c p t r = s r c p t r−>succ ;

118 cont inue ;

119 }

120

121 /∗ Apply r o t a t i on ∗/

122 j 2 = −k2 ∗ s i n ( 3 . ∗ t i l t ) ;

123 k2 ∗= cos ( 3 . ∗ t i l t ) ;

124

125 i f ( s r c p t r−>pred ) {

126 s r c be tax = ( s r c p t r−>twiss−>betax + s r c p t r−>pred−>twiss−>betax )

/2 ;

127 s r c be tay = ( s r c p t r−>twiss−>betay + s r c p t r−>pred−>twiss−>betay )

/2 ;

128 s r c ph i x = ( s r c p t r−>twiss−>phix + s r c p t r−>pred−>twiss−>phix ) /2 ;

129 s r c ph i y = ( s r c p t r−>twiss−>phiy + s r c p t r−>pred−>twiss−>phiy ) /2 ;

130 } e l s e {

131 s r c be tax = ( s r c p t r−>twiss−>betax + beamline−>twiss0−>betax ) /2 ;

132 s r c be tay = ( s r c p t r−>twiss−>betay + beamline−>twiss0−>betay ) /2 ;

133 s r c ph i x = ( s r c p t r−>twiss−>phix + beamline−>twiss0−>phix ) /2 ;

134 s r c ph i y = ( s r c p t r−>twiss−>phiy + beamline−>twiss0−>phiy ) /2 ;

135 }

136

137 de l t a ph i x = obs phix − s r c ph i x ;

138 de l t a ph i y = obs phiy − s r c ph i y ;

139

140 i f ( d e l t a ph i x < 0 . ) {

141 de l t a ph i x += 2 . ∗ M PI ∗ qx ;

142 }

143

144 i f ( d e l t a ph i y < 0 . ) {

145 de l t a ph i y += 2 . ∗ M PI ∗ qy ;
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146 }

147

148 f10010 += j1 ∗ s q r t ( s r c be tax ∗ s r c be tay ) ∗ exp ( i i ∗ ( d e l t a ph i x −

de l t a ph i y ) ) ;

149 f10100 += j1 ∗ s q r t ( s r c be tax ∗ s r c be tay ) ∗ exp ( i i ∗ ( d e l t a ph i x +

de l t a ph i y ) ) ;

150 f30000 += k2 ∗ s r c be tax ∗ s q r t ( s r c be tax ) ∗ exp ( 3 . ∗ i i ∗ de l t a ph i x

) ;

151 f12000 += k2 ∗ s r c be tax ∗ s q r t ( s r c be tax ) ∗ exp(− i i ∗ de l t a ph i x ) ;

152 f10200 += k2 ∗ s q r t ( s r c be tax ) ∗ s r c be tay ∗ exp ( i i ∗ ( d e l t a ph i x +

2 . ∗ de l t a ph i y ) ) ;

153 f01200 += k2 ∗ s q r t ( s r c be tax ) ∗ s r c be tay ∗ exp ( i i ∗ ( 2 . ∗

de l t a ph i y − de l t a ph i x ) ) ;

154 f01110 += k2 ∗ s q r t ( s r c be tax ) ∗ s r c be tay ∗ exp(− i i ∗ de l t a ph i x ) ;

155 f00300 += j2 ∗ s r c be tay ∗ s q r t ( s r c be tay ) ∗ exp ( i i ∗ 3 . ∗ de l t a ph i y

) ;

156 f00120 += j2 ∗ s r c be tay ∗ s q r t ( s r c be tay ) ∗ exp(− i i ∗ de l t a ph i y ) ;

157 f20100 += j2 ∗ s r c be tax ∗ s q r t ( s r c be tay ) ∗ exp ( i i ∗ ( 2 . ∗

de l t a ph i x + de l t a ph i y ) ) ;

158 f20010 += j2 ∗ s r c be tax ∗ s q r t ( s r c be tay ) ∗ exp ( i i ∗ ( 2 . ∗

de l t a ph i x − de l t a ph i y ) ) ;

159 f11010 += j2 ∗ s r c be tax ∗ s q r t ( s r c be tay ) ∗ exp(− i i ∗ de l t a ph i y ) ;

160

161 s r c p t r = s r c p t r−>succ ;

162 }

163 f10010 /= 4 . ∗ ( 1 . − exp ( 2 . ∗ M PI ∗ i i ∗ ( qx − qy ) ) ) ;

164 f10100 /= 4 . ∗ ( 1 . − exp ( 2 . ∗ M PI ∗ i i ∗ ( qx + qy ) ) ) ;

165 f30000 /= 48 .∗ ( 1 . − exp ( 2 . ∗ M PI ∗ i i ∗ 3 . ∗ qx ) ) ;

166 f12000 /= 16 .∗ ( 1 . − exp ( 2 . ∗ M PI ∗ i i ∗ qx ) ) ;

167 f10200 /= 16 .∗ ( 1 . − exp ( 2 . ∗ M PI ∗ i i ∗ ( qx + 2 . ∗ qy ) ) ) ;

168 f01200 /= 16 .∗ ( 1 . − exp ( 2 . ∗ M PI ∗ i i ∗ ( 2 . ∗ qy − qx ) ) ) ;

169 f01110 /= 8 . ∗ ( 1 . − exp (−2. ∗ M PI ∗ i i ∗ qx ) ) ;

170 f00300 /= 48 .∗ ( 1 . − exp ( 2 . ∗ M PI ∗ i i ∗ 3 . ∗ qy ) ) ;

171 f00120 /= 16 .∗ ( 1 . − exp (−2. ∗ M PI ∗ i i ∗ qy ) ) ;

172 f20100 /= 16 .∗ ( 1 . − exp ( 2 . ∗ M PI ∗ i i ∗ ( 2 . ∗ qx + qy ) ) ) ;

173 f20010 /= 16 .∗ ( 1 . − exp ( 2 . ∗ M PI ∗ i i ∗ ( 2 . ∗ qx − qy ) ) ) ;

174 f11010 /= 8 .∗ ( 1 . − exp (−2. ∗ M PI ∗ i i ∗ qy ) ) ;

175

176 beamline−>sDrivingTerms . f10010 [ idx ] [ 0 ] = std : : abs<double>( f10010 ) ;

177 beamline−>sDrivingTerms . f10100 [ idx ] [ 0 ] = std : : abs<double>( f10100 ) ;

178 beamline−>sDrivingTerms . f30000 [ idx ] [ 0 ] = std : : abs<double>( f30000 ) ;

179 beamline−>sDrivingTerms . f12000 [ idx ] [ 0 ] = std : : abs<double>( f12000 ) ;

180 beamline−>sDrivingTerms . f10200 [ idx ] [ 0 ] = std : : abs<double>( f10200 ) ;

181 beamline−>sDrivingTerms . f01200 [ idx ] [ 0 ] = std : : abs<double>( f01200 ) ;
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182 beamline−>sDrivingTerms . f01110 [ idx ] [ 0 ] = std : : abs<double>( f01110 ) ;

183 beamline−>sDrivingTerms . f00300 [ idx ] [ 0 ] = std : : abs<double>( f00300 ) ;

184 beamline−>sDrivingTerms . f00120 [ idx ] [ 0 ] = std : : abs<double>( f00120 ) ;

185 beamline−>sDrivingTerms . f20100 [ idx ] [ 0 ] = std : : abs<double>( f20100 ) ;

186 beamline−>sDrivingTerms . f20010 [ idx ] [ 0 ] = std : : abs<double>( f20010 ) ;

187 beamline−>sDrivingTerms . f11010 [ idx ] [ 0 ] = std : : abs<double>( f11010 ) ;

188

189 beamline−>sDrivingTerms . f10010 [ idx ] [ 1 ] = f10010 . r e a l ( ) ;

190 beamline−>sDrivingTerms . f10100 [ idx ] [ 1 ] = f10100 . r e a l ( ) ;

191 beamline−>sDrivingTerms . f30000 [ idx ] [ 1 ] = f30000 . r e a l ( ) ;

192 beamline−>sDrivingTerms . f12000 [ idx ] [ 1 ] = f12000 . r e a l ( ) ;

193 beamline−>sDrivingTerms . f10200 [ idx ] [ 1 ] = f10200 . r e a l ( ) ;

194 beamline−>sDrivingTerms . f01200 [ idx ] [ 1 ] = f01200 . r e a l ( ) ;

195 beamline−>sDrivingTerms . f01110 [ idx ] [ 1 ] = f01110 . r e a l ( ) ;

196 beamline−>sDrivingTerms . f00300 [ idx ] [ 1 ] = f00300 . r e a l ( ) ;

197 beamline−>sDrivingTerms . f00120 [ idx ] [ 1 ] = f00120 . r e a l ( ) ;

198 beamline−>sDrivingTerms . f20100 [ idx ] [ 1 ] = f20100 . r e a l ( ) ;

199 beamline−>sDrivingTerms . f20010 [ idx ] [ 1 ] = f20010 . r e a l ( ) ;

200 beamline−>sDrivingTerms . f11010 [ idx ] [ 1 ] = f11010 . r e a l ( ) ;

201

202 beamline−>sDrivingTerms . f10010 [ idx ] [ 2 ] = f10010 . imag ( ) ;

203 beamline−>sDrivingTerms . f10100 [ idx ] [ 2 ] = f10100 . imag ( ) ;

204 beamline−>sDrivingTerms . f30000 [ idx ] [ 2 ] = f30000 . imag ( ) ;

205 beamline−>sDrivingTerms . f12000 [ idx ] [ 2 ] = f12000 . imag ( ) ;

206 beamline−>sDrivingTerms . f10200 [ idx ] [ 2 ] = f10200 . imag ( ) ;

207 beamline−>sDrivingTerms . f01200 [ idx ] [ 2 ] = f01200 . imag ( ) ;

208 beamline−>sDrivingTerms . f01110 [ idx ] [ 2 ] = f01110 . imag ( ) ;

209 beamline−>sDrivingTerms . f00300 [ idx ] [ 2 ] = f00300 . imag ( ) ;

210 beamline−>sDrivingTerms . f00120 [ idx ] [ 2 ] = f00120 . imag ( ) ;

211 beamline−>sDrivingTerms . f20100 [ idx ] [ 2 ] = f20100 . imag ( ) ;

212 beamline−>sDrivingTerms . f20010 [ idx ] [ 2 ] = f20010 . imag ( ) ;

213 beamline−>sDrivingTerms . f11010 [ idx ] [ 2 ] = f11010 . imag ( ) ;

214

215 idx++;

216 obs pt r = obs ptr−>succ ;

217 }

218 }

elegant/twiss.cc
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Spectral Analysis Code

The code is organized as a library where the function pf find, contained in pf.c,

represents the main entry point to carry out the spectral analysis of turn-by-turn

data.

1 #de f i n e PARAMSCOUNT 4

2

3 #de f i n e OMEGA(n) (0 + PARAMSCOUNT ∗ n)

4 #de f i n e PHI(n) (1 + PARAMSCOUNT ∗ n)

5 #de f i n e AMP(n) (2 + PARAMSCOUNT ∗ n)

6 #de f i n e DECAY(n) (3 + PARAMSCOUNT ∗ n)

7

8 extern double ∗hanning window ;

libpf–0.3/src/pf utils.h

1

2 double ∗

3 p f f i n d ( double ∗data x , double ∗data y , i n t turns , double tune bound [ 4 ] ) ;

libpf–0.3/src/pf.h

1 #inc lude <s t d i o . h>

2 #inc lude <s t d l i b . h>

3 #inc lude <math . h>

4

5 #inc lude ” p f u t i l s . h”

6 #inc lude ” guess . h”

7 #inc lude ” fa . h”

8 #inc lude ” f a u t i l s . h”

9 #inc lude ”damping . h”

10

11 double ∗hanning window ;

12

13 double ∗

14 p f f i n d ( double ∗data x , double ∗data y , i n t turns , double tune bound [ 4 ] )

15 {

153
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16 double ∗ guess x , ∗ gues s y ;

17 double ∗windowed data ;

18 double qx , qy ;

19 i n t l , l i n e s ;

20

21 /∗ Tune l i n e s and skew are c a l c u l a t ed apart ∗/

22 double l i n e t a b l e [ 4 ] [ 2 ] = {{−2, 0} , {0 , −2} , {−1, −1} , {1 , −1}};

23 l i n e s = 6 ; /∗ Lines f o r each plane ∗/

24

25 gues s x = malloc ( s i z e o f ( double ) ∗ PARAMSCOUNT ∗ l i n e s ∗ 2) ;

26 gues s y = &gues s x [PARAMSCOUNT ∗ l i n e s ] ;

27

28 hanning window = malloc ( s i z e o f ( double ) ∗ turns ) ;

29 windowed data = malloc ( s i z e o f ( double ) ∗ turns ) ;

30

31 i n i t g u e s s ( turns ) ;

32 i n i t hann ing ( turns ) ;

33

34 /∗ X plane tune ana l y s i s ∗/

35 window data ( data x , windowed data , turns ) ;

36

37 i f ( gues s tune ( windowed data , turns , guess x , &tune bound [ 0 ] ) )

38 goto e r r o r ;

39

40 f r e q an ( windowed data , turns , gues s x ) ;

41

42 gues s x [DECAY(0) ] = −0.0003;

43

44 f i t damping ( data x , turns , gues s x ) ;

45

46 subtract and undump ( data x , turns , gues s x ) ;

47

48 /∗ Y plane tune ana l y s i s ∗/

49 window data ( data y , windowed data , turns ) ;

50

51 i f ( gues s tune ( windowed data , turns , guess y , &tune bound [ 2 ] ) )

52 goto e r r o r ;

53

54 f r e q an ( windowed data , turns , gues s y ) ;

55

56 gues s y [DECAY(0) ] = −0.0003;

57

58 f i t damping ( data y , turns , gues s y ) ;

59



II. SPECTRAL ANALYSIS CODE 155

60 subtract and undump ( data y , turns , gues s y ) ;

61

62 /∗ X plane h igher order an a l y s i s ∗/

63

64 window data ( data x , windowed data , turns ) ;

65

66 qx = gues s x [OMEGA(0) ] ;

67 qy = gues s y [OMEGA(0) ] ;

68

69 l = 1 ;

70 /∗ Calcu la te skew l i n e s ∗/

71 gues s x [OMEGA( l ) ] = qy ;

72 o r t h o p r o j e c t i o n ( windowed data , turns , gues s x [OMEGA( l ) ] ,

73 &guess x [ PHI( l ) ] , &gues s x [AMP( l ) ] ) ;

74

75

76 /∗ Times f o r s ex tupo l e s and oc tupo l e s ∗/

77 undump(windowed data , turns , gues s x [DECAY(0) ] ) ;

78 f o r ( l = 2 ; l < l i n e s ; l++) {

79 gues s x [OMEGA( l ) ] = l i n e t a b l e [ l − 2 ] [ 0 ] ∗ qx + l i n e t a b l e [

l − 2 ] [ 1 ] ∗ qy ;

80

81 o r t h o p r o j e c t i o n ( windowed data , turns , gues s x [OMEGA( l ) ] ,

82 &guess x [ PHI( l ) ] , &gues s x [AMP( l ) ] ) ;

83

84 }

85

86

87 /∗ Y plane h igher order an a l y s i s ∗/

88

89 window data ( data y , windowed data , turns ) ;

90

91 l = 1 ;

92 /∗ Calcu la te skew l i n e s ∗/

93 gues s y [OMEGA( l ) ] = qx ;

94 o r t h o p r o j e c t i o n ( windowed data , turns , gues s y [OMEGA( l ) ] ,

95 &guess y [ PHI( l ) ] , &gues s y [AMP( l ) ] ) ;

96

97

98 /∗ Times f o r s ex tupo l e s and oc tupo l e s ∗/

99 undump(windowed data , turns , gues s y [DECAY(0) ] ) ;

100 f o r ( l = 2 ; l < l i n e s ; l++) {

101 gues s y [OMEGA( l ) ] = l i n e t a b l e [ l − 2 ] [ 0 ] ∗ qy + l i n e t a b l e [

l − 2 ] [ 1 ] ∗ qx ;
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102

103 o r t h o p r o j e c t i o n ( windowed data , turns , gues s y [OMEGA( l ) ] ,

104 &guess y [ PHI( l ) ] , &gues s y [AMP( l ) ] ) ;

105

106 }

107

108 e r r o r :

109 r e l e a s e g u e s s ( ) ;

110 f r e e ( hanning window ) ;

111 f r e e ( windowed data ) ;

112

113 /∗ Guess y i s a l l o c a t e d a f t e r gues s x ∗/

114 re turn gues s x ;

115 }

libpf–0.3/src/pf.c

1 void i n i t g u e s s ( i n t turns ) ;

2 void r e l e a s e g u e s s ( void ) ;

3 i n t gues s tune ( double ∗data , i n t turns , double ∗ guess , double tune bound

[ 2 ] ) ;

libpf–0.3/src/guess.h

1 #inc lude <s t d l i b . h>

2 #inc lude <s t r i n g . h>

3 #inc lude <math . h>

4 #inc lude <g s l / g s l f f t r e a l . h>

5 #inc lude <g s l / g s l f f t h a l f c omp l e x . h>

6

7 #inc lude ” p f u t i l s . h”

8

9 double ∗amp, ∗buf ;

10 g s l f f t r e a l w a v e t a b l e ∗wave ;

11 g s l f f t r e a l w o r k s p a c e ∗work ;

12

13 /∗ Find f i r s t ” count” peaks .

14 ∗ Warning : d e r i v a t i v e vec to r ge t s modi f i ed ∗/

15 i n t

16 spot peaks ( double ∗buf , i n t count , double tune bound [ 2 ] )

17 {

18 i n t i ;

19 i n t peak ;

20 i n t low , h i ;
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21 double aux ;

22

23 low = 2 . ∗ tune bound [ 0 ] ∗ ( double ) count ;

24 hi = 2 . ∗ tune bound [ 1 ] ∗ ( double ) count ;

25

26 aux = 0 . ;

27 peak = −1;

28 f o r ( i = low ; i < hi ; i++) {

29

30 i f ( buf [ i ] > aux ) {

31 aux = buf [ i ] ;

32 peak = i ;

33 }

34 }

35

36 i f ( peak == i − 1)

37 peak = −1;

38

39 re turn peak ;

40 }

41

42 void

43 i n i t g u e s s ( i n t turns )

44 {

45 amp = malloc ( s i z e o f ( double ) ∗ turns / 2) ;

46 buf = malloc ( s i z e o f ( double ) ∗ turns ) ;

47

48 work = g s l f f t r e a l w o r k s p a c e a l l o c ( turns ) ;

49 wave = g s l f f t r e a l w a v e t a b l e a l l o c ( turns ) ;

50 }

51

52 void

53 r e l e a s e g u e s s ( )

54 {

55 f r e e ( buf ) ;

56 f r e e (amp) ;

57

58 g s l f f t r e a l w o r k s p a c e f r e e (work ) ;

59 g s l f f t r e a l w a v e t a b l e f r e e (wave ) ;

60 }

61

62 /∗ On succ e s s r e tu rn s 0 ∗/

63 i n t

64 gues s tune ( double ∗data , i n t turns , double ∗ guess , double tune bound [ 2 ] )
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65 {

66 double alpha , beta , gamma;

67 double p ;

68 i n t i , j ;

69 i n t peak ;

70

71 /∗ Copy data ∗/

72 f o r ( i = 0 ; i < turns ; i++) {

73 buf [ i ] = data [ i ] ;

74 }

75

76 g s l f f t r e a l t r a n s f o rm ( buf , 1 , turns , wave , work ) ;

77

78 /∗ Skip the o f f s e t ∗/

79 amp [ 0 ] = 0 ;

80 j = 1 ;

81 /∗ 2 j − 1 = i ∗/

82 f o r ( i = 1 ; i < turns − 1 ; i += 2) {

83 amp [ j ] = buf [ i ] ∗ buf [ i ] +

84 buf [ i + 1 ] ∗ buf [ i + 1 ] ;

85 j++;

86 }

87

88 /∗ Remember the spectrum has ha l f po in t s o f the data bu f f e r ∗/

89 peak = spot peaks (amp, turns / 2 , tune bound ) ;

90 i f ( peak == −1)

91 re turn −1;

92

93 /∗ Omega from quadrat i c i n t e r p o l a t i o n ∗/

94 alpha = sq r t (amp [ peak − 1 ] ) ;

95 beta = sq r t (amp [ peak ] ) ;

96 gamma = sqr t (amp [ peak + 1 ] ) ;

97

98 p = 0.5 ∗ ( alpha − gamma) / ( alpha − 2 . ∗ beta + gamma) ;

99

100 guess [ 0 ] = p ;

101 guess [ 0 ] += peak ;

102

103 guess [ 0 ] ∗= 2 . ∗ M PI / ( double ) turns ;

104

105 re turn 0 ;

106 }

libpf–0.3/src/guess.c
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1 void f r eq an ( double ∗buf , i n t turns , double ∗ guess ) ;

libpf–0.3/src/fa.h

1 #inc lude <math . h>

2 #inc lude <g s l / g s l e r r n o . h>

3 #inc lude <g s l / gs l math . h>

4 #inc lude <g s l / gs l min . h>

5

6 #inc lude ” p f u t i l s . h”

7 #inc lude ” f a u t i l s . h”

8

9 s t r u c t Data {

10 double ∗buf ; /∗ Data to be f i t t e d ∗/

11 i n t turns ; /∗ Number o f turns ∗/

12 } ;

13

14 double

15 t e s t amp l i tude ( double q , void ∗param)

16 {

17 i n t i , count ;

18 double ∗buf ;

19 double im , re ;

20 double amp ;

21

22 buf = ( ( s t r u c t Data ∗)param)−>buf ;

23 count = ( ( s t r u c t Data ∗)param)−>turns ;

24

25 re = 0 . ;

26 im = 0 . ;

27

28 f o r ( i = 0 ; i < count ; i++) {

29 im += buf [ i ] ∗ s i n (q ∗ ( double ) i ) ;

30 re += buf [ i ] ∗ cos ( q ∗ ( double ) i ) ;

31 }

32

33 amp = hypot ( im , re ) ;

34

35 re turn −1. ∗ amp ;

36 }

37

38 void

39 f r e q an ( double ∗data , i n t turns , double ∗ guess )

40 {
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41 i n t s t a tu s ;

42 i n t i t e r ;

43 g s l m in fm in im i z e r ∗minimizer ;

44 double omega ;

45 double lower bound , upper bound ;

46 g s l f u n c t i o n f ;

47

48 s t r u c t Data f i t d a t a ;

49

50 f i t d a t a . buf = data ;

51 f i t d a t a . turns = turns ;

52

53 omega = guess [OMEGA(0) ] ;

54

55 lower bound = omega − 2 . ∗ M PI / ( double ) turns ;

56 upper bound = omega + 2 . ∗ M PI / ( double ) turns ;

57

58 i f ( t e s t amp l i tude (omega , &f i t d a t a ) > t e s t amp l i tude ( lower bound , &

f i t d a t a ) | |

59 t e s t amp l i tude (omega , &f i t d a t a ) > t e s t amp l i tude ( upper bound , &

f i t d a t a ) ) {

60 re turn ;

61 }

62

63 f . f unc t i on = &te s t amp l i tude ;

64 f . params = &f i t d a t a ;

65

66 minimizer = g s l m i n fm i n im i z e r a l l o c ( g s l m in fm in im i z e r b r en t ) ;

67 g s l m in fm in im i z e r s e t ( minimizer , &f , omega ,

68 lower bound , upper bound ) ;

69

70 i t e r = 0 ;

71 do {

72 i t e r++;

73 s t a tu s = g s l m i n fm i n im i z e r i t e r a t e ( minimizer ) ;

74

75 omega = gsl min fminimizer x minimum ( minimizer ) ;

76 lower bound = gs l m in fm in im i z e r x l owe r ( minimizer ) ;

77 upper bound = gs l m in fm in im i z e r x uppe r ( minimizer ) ;

78

79 s t a tu s = g s l m i n t e s t i n t e r v a l ( lower bound , upper bound , 1e−6, 1e−6) ;

80

81 } whi le ( s t a tu s == GSL CONTINUE && i t e r < 10) ;

82
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83 o r t h o p r o j e c t i o n ( data , turns , omega ,

84 &guess [ PHI (0 ) ] , &guess [AMP(0) ] ) ;

85

86 guess [OMEGA(0) ] = omega ;

87

88 g s l m i n fm i n im i z e r f r e e ( minimizer ) ;

89 }

libpf–0.3/src/fa.c

1 void o r t h o p r o j e c t i o n ( double ∗buf , i n t count , double q ,

2 double ∗phase , double ∗ amplitude ) ;

3

4 void i n i t hann ing ( i n t count ) ;

5

6 void window data ( double ∗data , double ∗windowed data , i n t turns ) ;

7

8 void undump( double ∗data , i n t turns , double k ) ;

9

10 void subtract and undump ( double ∗data , i n t turns , double ∗ guess ) ;

libpf–0.3/src/fa utils.h

1 #inc lude <math . h>

2

3 #inc lude ” p f u t i l s . h”

4

5 void

6 o r t h o p r o j e c t i o n ( double ∗buf , i n t count , double q ,

7 double ∗phase , double ∗ amplitude )

8 {

9 i n t i ;

10 double im , re ;

11

12 re = 0 . ;

13 im = 0 . ;

14

15 f o r ( i = 0 ; i < count ; i++) {

16 im += buf [ i ] ∗ s i n (q ∗ ( double ) i ) ;

17 re += buf [ i ] ∗ cos ( q ∗ ( double ) i ) ;

18 }

19

20 ∗ amplitude = hypot ( im , re ) ∗ 2 . / ( count − 1 . ) ;

21 ∗phase = −atan2 ( im , re ) ;
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22 }

23

24 /∗ Hanning window ∗/

25 void

26 i n i t hann ing ( i n t count )

27 {

28 i n t i ;

29 double ∗window ;

30

31 window = hanning window ;

32

33 f o r ( i = 0 ; i < count ; i++) {

34 window [ i ] = cos ( 2 . ∗ M PI ∗ ( double ) i / ( double ) ( count − 1)

) ;

35 window [ i ] = ( 1 . − window [ i ] ) ;

36 }

37 }

38

39 void

40 window data ( double ∗data , double ∗windowed data , i n t turns )

41 {

42 i n t i ;

43

44 f o r ( i = 0 ; i < turns ; i++) {

45 windowed data [ i ] = hanning window [ i ] ∗ data [ i ] ;

46 }

47 }

48

49 void

50 undump( double ∗data , i n t turns , double k )

51 {

52 i n t t ;

53

54 f o r ( t = 0 ; t < turns ; t++) {

55 data [ t ] ∗= exp(− k ∗ t ) ;

56 }

57 }

58

59 void

60 subtract and undump ( double ∗data , i n t turns , double ∗ guess )

61 {

62 i n t t ;

63 double omega , a , phi , k ;

64
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65 omega = guess [OMEGA(0) ] ;

66 a = guess [AMP(0) ] ;

67 phi = guess [ PHI (0 ) ] ;

68 k = guess [DECAY(0) ] ;

69

70 f o r ( t = 0 ; t < turns ; t++) {

71 data [ t ] ∗= exp(− k ∗ t ) ;

72 data [ t ] −= a ∗ cos ( omega ∗ t + phi ) ;

73 }

74 }

libpf–0.3/src/fa utils.c

1 void f i t damping ( double ∗buf , i n t turns , double ∗ guess ) ;

libpf–0.3/src/damping.h

1 #inc lude <math . h>

2 #inc lude <g s l / g s l m u l t i f i t n l i n . h>

3 #inc lude <g s l / g s l b l a s . h>

4

5 #inc lude ” p f u t i l s . h”

6

7 s t r u c t Data {

8 double ∗y ; /∗ Data to be f i t t e d ∗/

9 i n t turns ; /∗ Number o f turns ∗/

10 double omega ;

11 double phi ;

12 } ;

13

14 i n t

15 tune f ( const g s l v e c t o r ∗x , void ∗data ,

16 g s l v e c t o r ∗ f )

17 {

18 double ∗y ;

19 double aux ;

20 double omega , phi , a , k ;

21 i n t turns , t ;

22

23 turns = ( ( s t r u c t Data ∗) data )−>turns ;

24 y = ( ( s t r u c t Data ∗) data )−>y ;

25 omega = ( ( s t r u c t Data ∗) data )−>omega ;

26 phi = ( ( s t r u c t Data ∗) data )−>phi ;

27
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28 f o r ( t = 0 ; t < turns ; t++) {

29 a = g s l v e c t o r g e t (x , 0) ;

30 k = g s l v e c t o r g e t (x , 1) ;

31

32 aux = a ∗ cos ( omega ∗ t + phi ) ∗ exp ( t ∗ k ) ;

33 g s l v e c t o r s e t ( f , t , aux − y [ t ] ) ;

34 }

35

36 re turn GSL SUCCESS ;

37 }

38

39 i n t

40 tune d f ( const g s l v e c t o r ∗ x , void ∗data ,

41 g s l ma t r i x ∗ J )

42 {

43 double omega , phi , a , k ;

44 double d a , d k ;

45 i n t turns , t ;

46

47 turns = ( ( s t r u c t Data ∗) data )−>turns ;

48 omega = ( ( s t r u c t Data ∗) data )−>omega ;

49 phi = ( ( s t r u c t Data ∗) data )−>phi ;

50

51 f o r ( t = 0 ; t < turns ; t++) {

52 a = g s l v e c t o r g e t (x , 0) ;

53 k = g s l v e c t o r g e t (x , 1) ;

54

55 d a = cos ( omega ∗ t + phi ) ∗ exp ( t ∗ k ) ;

56 d k = t ∗ a ∗ cos ( omega ∗ t + phi ) ∗ exp ( t ∗ k ) ;

57

58 g s l ma t r i x s e t (J , t , 0 , d a ) ;

59 g s l ma t r i x s e t (J , t , 1 , d k ) ;

60 }

61

62 re turn GSL SUCCESS ;

63 }

64

65 i n t

66 t un e f d f ( const g s l v e c t o r ∗ x , void ∗data ,

67 g s l v e c t o r ∗ f , g s l ma t r i x ∗ J )

68 {

69 tune f (x , data , f ) ;

70 tune d f (x , data , J ) ;

71
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72 re turn GSL SUCCESS ;

73 }

74

75 void

76 f i t damping ( double ∗buf , i n t turns , double ∗ guess )

77 {

78 g s l m u l t i f i t f d f s o l v e r ∗ s ;

79

80 i n t i t e r ;

81 i n t s t a tu s ;

82

83 s t r u c t Data data ;

84

85 data . turns = turns ;

86 data . y = buf ;

87 data . omega = guess [OMEGA(0) ] ;

88 data . phi = guess [ PHI (0 ) ] ;

89

90 g s l v e c t o r v i ew x ;

91 /∗ Amplitude and decay are s to r ed one a f t e r the other in the guess vec to r

∗/

92 x = g s l v e c t o r v i ew a r r a y (&guess [AMP(0) ] , 2) ;

93

94 g s l m u l t i f i t f u n c t i o n f d f f ;

95

96 f . f = &tune f ;

97 f . d f = &tune d f ;

98 f . f d f = &tune f d f ;

99 f . n = turns ;

100 f . p = 2 ;

101 f . params = &data ;

102

103 s = g s l m u l t i f i t f d f s o l v e r a l l o c ( g s l mu l t i f i t f d f s o l v e r lm s d e r ,

104 turns , 2) ;

105 g s l m u l t i f i t f d f s o l v e r s e t ( s , &f , &x . vec to r ) ;

106

107 i t e r = 0 ;

108 do {

109 i t e r++;

110 s t a tu s = g s l m u l t i f i t f d f s o l v e r i t e r a t e ( s ) ;

111

112 i f ( s t a tu s )

113 break ;

114
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115 s t a tu s = g s l m u l t i f i t t e s t d e l t a ( s−>dx , s−>x ,

116 1e−6, 1e−6) ;

117

118 } whi le ( s t a tu s == GSL CONTINUE && i t e r < 10) ;

119

120 /∗ Copy back r e s u l t s ( s−>x ) on to the i n i t i a l guess vec to r ( x ) ∗/

121 gs l vector memcpy (&x . vector , s−>x ) ;

122

123 g s l m u l t i f i t f d f s o l v e r f r e e ( s ) ;

124 }

libpf–0.3/src/damping.c
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