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1 Introduction

In the case of the ALBA lattice a LOCO [1] fit takes several minutes. Routinely a LOCO measurement

and analysis is performed every week. Usually that analysis runs twice in the measured data. The first

analysis uses only the available correction knobs, that is, the 112 quadrupoles, while the second analysis

uses also the quadrupole component of the 32 combined function bending magnets as quadrupole cor-

rectors as well. The most time-consuming part in that analysis is the calculation of the orbit response

matrix (ORM) and dispersion change as a function of the fit parameters.

In this internal report we show how we can perform some of such calculations in a faster way. For

example, in the case of the uncoupled response matrix, where the exact formula is well known, the

derivatives of the formula can be calculated instead of the usual numerical differentiation.

In [2], following a different formulation, equivalent results are presented. In that case the formulas

are designed for the ORM fitting algorithm used at the ESRF. The formulas that we are presenting here

shall be implemented in LOCO and apply to the thick quadrupole and dipole case which is essential in the

case of the ALBA storage ring lattice. The next sections are dedicated to show the adequated formulas

for the ORM and dispersion derivatives calculation. In Apendix A, the ORM derivative is compared to

the numerical calculation for the ALBA case.In Apendix B, the dispersion derivative is compared to the

numerical calculation for the ALBA case. In appendix C The performance of LOCO making use of the

above mentioned analytical formulas is compared with the usual LOCO using numerical calculations for

the ALBA case.

2 Constant energy uncoupled response matrix quadrupole derivate

In this case the derivation is based in the closed orbit formula [3]:

Ri, j =

√

βiβ j

2sin(πν)
cos(|µi−µ j|−πν), (1)

where Ri, j represents the orbit response at the i− th beam position monitor (BPM) for the j− th corrector

in each plane, βi is the corresponding plane beta function at the BPM, β j is the corresponding plane beta

function at the corrector, ν is the betatron tune in the corresponding plane, µi is the corresponding plane

betatron phase at the i− th BPM and µ j is the corresponding plane betatron phase at the j− th corrector.

Using the chain rule, its derivative with respect to the k− th quadrupole reads:

dRi, j

dqk
=

∂Ri, j

∂βi

dβi

dqk
+

∂Ri, j

∂β j

dβ j

dqk
+

∂Ri, j

∂ν

dν

dqk
+

∂Ri, j

∂ µi

dµi

dqk
+

∂Ri, j

∂ µ j

dµ j

dqk
, (2)
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Each of the derivatives with respect to the optical functions β , µ and the tune ν are calculated from

equation 1 and are expressed as follows:

∂Ri, j

∂βi

=

√

β j

4
√

βisin(πν)
Ci, j,1

∂Ri, j

∂β j

=

√

βi

4
√

β jsin(πν)
Ci, j,1

∂Ri, j

∂ν
=−π

√

βiβ j

2sin2(πν)
[Ci, j,1cos(πν)− s(µi−µ j)Si, j,1sin(πν)]

∂Ri, j

∂ µi

=−
√

βiβ j

2sin(πν)
Si, j,1

∂Ri, j

∂ µ j

=

√

βiβ j

2sin(πν)
Si, j,1

(3)

In the previous formula, the following definitions have been used:

Ci, j,n =cos(n|µi−µ j|−nπν)

Si, j,n =s(µi−µ j)sin(n|µi−µ j|−nπν),
(4)

where s() represents the sign function. Each of the derivatives with respect to the quadrupole strength

qk is calculated in the next subsections. A comparison with numerical calculations for the ALBA case is

presented in appendix A.

2.1 Tune change with the quadrupole strength

In this case the relation is well known [3]:

dν

dqk
=± βkLk

4π
, (5)

The sign is positive for the horizontal plane and negative in the vertical plane.

2.2 Beta change with the quadrupole strength

Also in this case, the well known beta beating formula at any lattice location i is used:

dβi

dqk
=∓ βiβkLk

2sin(2πν)
Ci,k,2, (6)

The sign is negative for the horizontal plane and positive in the vertical plane.

2.3 Phase change with the quadrupole strength

Also in this case, there is an explicit formula that can be found in the literature. However, it can also

be directly obtained using equation 6. Here, an small demonstration follows. The phase advance can be

calculated from the beta function as:

µi =

∫ zi

0

dt

β (t)
, (7)

hence, its derivative with respect to the quadrupoles value:

dµi

dqk
=−

∫ zi

0

dβ (t)

dqk

dt

β (t)2
, (8)
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and now, using equation 6, it can be written as:

dµi

dqk
=± βkLk

2sin(2πν)

∫ zi

0
cos(2|µ(t)−µk|−2πν)

dt

β (t)
. (9)

Using again equation 7 we can change the integration variable:

dµi

dqk
=± βkLk

2sin(2πν)

∫ µi

0
cos(2|µ −µk|−2πν)dµ . (10)

This integral can be solved. First we should notice that:

d [s(µ −µk)sin(2|µ −µk|−2πν)]

dz
= 2δ (µ −µk)sin(2|µ −µk|−2πν)+2cos(2|µ −µk|−2πν), (11)

where δ () represents the Dirac’s delta function. Integrating the previous equation and isolating the term

that also appears in equation 10 we obtain:

∫ µi

0
cos(2|µ −µk|−2πν)dz=

[

s(z− z0)

2
sin(z1|z− z0|+ z2)

]µi

0

+θ(µi−µk)sin(2πν), (12)

where θ() is the Heaviside’s step function. Then equation 10 also reads:

dµi

dqk
=± βkLk

2sin(2πν)

[[

s(µ −µk)

2
sin(2|µ −µk|−2πν)

]µi

0

+θ(µi−µk)sin(2πν)

]

. (13)

Finally, we obtain:

dµi

dqk
=± βkLk

4sin(2πν)
[Si,k,2+ sin(2µk−2πν)+2θ(µi−µk)sin(2πν)] , (14)

which, as usual, changes sign in the vertical plane. Notice that by substituting µi by 2πν and µk by 0 in

equations 14, one can recover equation 5. Also, notice that the second term not containing µi terms will

be canceled out once added up in equation 2 with the similar term from
dµ j

dqk
.

2.4 Complete formula

We can include the above equations in a single formula, which results in the following expression:

dRi, j

dqk
=∓

√

βiβ jβkLk

8sin(πν)sin(2πν)

[

Ci, j,1

[

Ci,k,2+C j,k,2+2cos2(πν)
]

+Si, j,1
[

Si,k,2−S j,k,2+ sin(2πν)(2θ(µi −µk)−2θ(µ j−µk))− s(µi−µ j)
]]

,

(15)

where the sing is negative for the horizontal plane and negative for the vertical plane.

2.5 Thick quadrupole equations

Equation 15 is only valid for thin quadrupoles. The formula can be modified to make it valid for tick

quadrupoles. Regarding the variation of the Twiss functions inside the quadrupole, three types of terms

in equation 15 have to be considered:

1. No phase variation terms: βkLk

2. Sin like terms: βkLk sin(2µk)
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3. Cos like terms: βkLk cos(2µk)

4. Other terms: βkLk Sk,i,2 or βkLkCk,i,2

In the following subsections, the different terms modifications will be solved for a thick focusing quadrupole.

The generalization to defocussing quadrupoles and combined function bending magnets can be done a

posteriori. In the case of the defocussing magnet the quadrupole strength qk must be substituted by −qk

and hence sin(
√
qk)/

√
qk is substituted by sinh(

√
qk)/

√
qk . sin and cos terms do not appear explicitly

in equation 15, but they are very useful to calculate the other more convoluted terms.

2.5.1 No phase variation terms

This term appears in equation 5 and 14. In this simplest case, the effective beta function should be used.

The following substitution should be done:

βkLk 7−→ Ik,0 ≡
∫ Lk

0
βk(z)dz (16)

For a thick focusing quadrupole, the transfer matrix along the quadrupole is the following:

A(qk,s|0) =





cos(
√
qkz) sin(

√
qkz)/

√
qk

−√
qkzin(

√
qkz) cos(

√
qkz)



 , (17)

The Twiss transfer matrix can be obtained from the transfer matrix and allows to express analytically the

beta function variation inside the quadrupole:









βk(z)

αk(z)

γk(z)









=











cos2(
√
qkz) − sin(2

√
qkz)√

qk
sin2(

√
qkz)/qk

√
qk
2
sin(2

√
qkz) cos(2

√
qkz) − 1

2
√
qk
sin(2

√
qkz)

qksin
2(
√
qkz)

√
qksin(2

√
qkz) cos2(

√
qkz)



















βk

αk

γk









. (18)

Here, by convention, when optics functions βk, αk, γk or µk have no explicit dependency with position,

they have the value at the beginning of the k− th element. In particular, the beta function variation along

the quadrupole reads:

βk(z) =
βk

2
+

γk
2qk

+

[

βk

2
− γk
2qk

]

cos(2
√
qkz)−

αk√
qk
sin(2

√
qkz) (19)

Notice that it is coherent with the aforementioned convention since from the previous equation, we

find that βk(0) = βk and β ′
k(0) =−2αk. Using the previous equation, the integral Ik,0 can be calculated:

Ik,0 =

[

βk

2
+

γk
2qk

]

Lk+

[

βk

2
− γk
2qk

]

sin(2
√
qkLk)

2
√
qk

+
αk

2qk
[cos(2

√
qkLk)−1] (20)

2.5.2 Sin like term

This term does not appear explicitly in the equation 15, but it is useful for some of them, for example

when integrating the βk(z)Si,k,2 term. The following substitution should be done:

βkLk sin(2(µk(z)−µk)) 7−→ Ik,s,2 ≡
∫ Lk

0
βk(z)sin(2(µk(z)−µk))dz, (21)
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where again, when the z dependency is not explicit it indicates the value at the beginning of the quadupole.

In order to solve this integral, the general transfer matrix expression can be used:

A(k,s|0) =






√

βk(z)
βk

(cos(µk(z)−µk)+αksin(µk(z)−µk))
√

βk(z)βksin(µk(z)−µk)

αk−αk(z)√
βk(z)βk

cos(µk(z)−µk)− 1−αkαk(z)√
βk(z)βk

sin(µk(z)−µk)
√

βk

βk(z)
(cos(µk(z)−µk)−αk(z)sin(µk(z)−µk))






,

(22)

which matching the A(k,s|0)1,1 and A(k,s|0)1,2 terms with equation 17 gives the following result:
√

βk(z)sin(µk(z)−µk) =
1

√

qkβk

sin(
√
qkz)

√

βk(z)cos(µk(z)−µk) =
√

βkcos(
√
qkz)−

αk
√

qkβk

sin(
√
qkz),

(23)

The previous equations are useful to calculate integral Σk,1 since:

Ik,s,2 =

∫ Lk

0
2βk(z)sin((µk(z)−µk))cos((µk(z)−µk))dz. (24)

After few algebraic manipulations, the previous integral can be expressed as:

Ik,s,2 =
1

2qk

[

1− cos(2
√
qkLk)+

αk

βk

(
sin(2

√
qkLk)√
qk

−2Lk)

]

. (25)

2.5.3 Cos like term

This term does not appear explicitly in the equation 15, but it is useful for some of them, for example

when integrating the βk(z)Ci,k,2 term. The following substitution should be done:

βkLk cos(2(µk(z)−µk)) 7−→ Ik,c,2 ≡
∫ Lk

0
βk(z)cos(2(µk(z)−µk))dz, (26)

where again, when the z dependency is not explicit it indicates the value at the beginning of the quadupole.

We can rewrite the previous equation as:

Ik,c,2 =
∫ Lk

0
βk(z)

[

1−2sin2(µk(z)−µk)
]

dz

= Ik,0−2

∫ Lk

0
βk(z)sin

2(µk(z)−µk)dz.

(27)

Making use of equation 23, the following equation can be solved:

Ik,c,2 = Ik,0+
1

qkβk

[

sin(2
√
qkLk)

2
√
qk

−Lk

]

. (28)

2.5.4 Other terms

In equation 15, the following terms appear:

βkLk Si,k,2 7−→ Σi,k,2 ≡
∫ Lk

0
βk(z)s(µi−µk(z))sin(2|µi −µk(z)|−2πν)dz

βkLkCi,k,2 7−→ Γi,k,2 ≡
∫ Lk

0
βk(z)cos(2|µi−µk(z)|−2πν)dz

βkLk θ(µi−µk) 7−→ ∆i,k,2 ≡
∫ Lk

0
βk(z)θ(µi−µk(z))dz.

(29)
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The integrals in the previous equations can be solved using equations 25 and 28. However, we should

treat the case when i= k separately. Although this may seem an unlikely case, as we will see further in

the text, it needs to be considered.

2.5.4.1 Case i 6= k

First we should notice that:

s(µi−µk(z))sin(2|µi −µk(z)|−2πν) =































µi > µk(z),µk sin(2(µi−µk)−2πν)cos(2(µk(z)−µk))

−cos(2(µi−µk)−2πν)sin(2(µk(z)−µk))

µi < µk(z),µk −sin(2(µk−µi)−2πν)cos(2(µk(z)−µk))

−cos(2(µk−µi)−2πν)sin(2(µk(z)−µk))

, (30)

where µk has been included as the phase at the beginning of element k. That definition allows us to

combine the two cases as follows:

s(µi−µk(z))sin(2|µi −µk(z)|−2πν) =s(µi−µk)sin(2|µi−µk|−2πν)cos(2(µk(z)−µk))

− cos(2|µi−µk|−2πν)sin(2(µk(z)−µk),
(31)

which in our previous notation reads:

Si,zk ,2 = Si,k,2cos(2(µk(z)−µk))−Ci,k,2sin(2(µk(z)−µk)), (32)

Similarly, with the second term in equation 29, we have:

cos(2|µi−µk(z)|−2πν) =































µi > µk(z),µk cos(2(µi−µk)−2πν)cos(2(µk(z)−µk))

+sin(2(µi−µk)−2πν)sin(2(µk(z)−µk))

µi < µk(z),µk cos(2(µk−µi)−2πν)cos(2(µk(z)−µk))

−sin(2(µk−µi)−2πν)sin(2(µk(z)−µk))

, (33)

which again can be simplified as follows:

Ci,zk ,2 =Ci,k,2cos(2(µk(z)−µk))+Si,k,2sin(2(µk(z)−µk)), (34)

After these algebraic manipulations, the integrals in equation 29 can be rewritten in terms of Ik,0, Ik,s and

Ik,c:

Σi,k,2 = Ik,c,2Si,k,2− Ik,s,2Ci,k,2

Γi,k,2 = Ik,c,2Ci,k,2+ Ik,s,2Si,k,2

∆i,k,2 = Ik0θ(µi−µk),

(35)

2.5.4.2 Case i= k

In this special case, integrals in equation 29 become:

Σk,k,2 =
∫ Lk

0
βk(z)s(µk −µk(z))sin(2|µk −µk(z)|−2πν)dz

Γk,k,2 =

∫ Lk

0
βk(z)cos(2|µk −µk(z)|−2πν)dz

∆k,k,2 =

∫ Lk

0
βk(z)θ(µk −µk(z))dz.

(36)
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Since by definition µk(z)> µk, the previous equation becomes:

Σk,k,2 =−
∫ Lk

0
βk(z)sin(2(µk(z)−µk)−2πν)dz

Γk,k,2 =
∫ Lk

0
βk(z)cos(2(µk(z)−µk)−2πν)dz

∆k,k,2 = 0.

(37)

Expanding the sin and cos terms in the previous equations we get:

Σk,k,2 = Ik,c,2sin(2πν)− Ik,s,2cos(2πν)

Γk,k,2 = Ik,c,2cos(2πν)+ Ik,s,2sin(2πν)

∆k,k,2 = 0.

(38)

2.5.4.3 All cases

Notice that the result from equation 38 does not correspond with equation 35 evaluated at i = k. While

Ck,k,2 = cos(2πν), the other terms do not match because s(0) = 0 and θ(0) = 1. A compact formula

including both cases can be achieved if we consider the following modified sign and theta functions:

s̃(x) =























x> 0 1

x= 0 −1

x< 0 −1

, (39)

and

θ̃ (x) =























x> 0 1

x= 0 0

x< 0 0

. (40)

With the previous definitions, the solution for equation 29 valid for all cases is:

Σi,k,2 = Ik,c,2S̃i,k,2− Ik,s,2Ci,k,2

Γi,k,2 = Ik,c,2Ci,k,2+ Ik,s,2S̃i,k,2

∆i,k,2 = Ik0θ̃ (µi−µk),

(41)

where S̃i,k,n = s̃(µi−µk)sin(n|µi −µk|−nπν).

2.6 Complete thick quadrupole formula

Starting from equation 15, using the definitions from the previous subsection, we obtain:

dRi, j

dqk
=∓

√

βiβ j

8sin(πν)sin(2πν)

[

Ci, j,1

[

Γi,k,2+Γ j,k,2+2Ik,0cos
2(πν)

]

+Si, j,1
[

Σi,k,2−Σ j,k,2+ Ik,0sin(2πν)(2θ̃ (µi−µk)−2θ̃(µ j−µk))− s(µi−µ j)
]]

,

(42)

where the negative sing corresponds to the horizontal plane ORM and the positive sing applies in the

case of the vertical ORM.
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2.7 Edge focusing effect

For combined function dipoles the previous formulas can be applied to the hard edge model with some

precautions. Fist of all, in the horizontal plane the previous formulas have to be modified in the following

way:

qk,x 7−→ qk+
1

ρ2
, (43)

where ρ is the dipole radius of curvature. Additionally, according to [4], since the thin lens version of

the dipole’s edge element transport matrix reads:





xend

x′end



=





1 0

C′
x 1









xstart

x′start









yend

y′end



=





1 0

C′
y 1









ystart

y′start



 ,

(44)

where:

C′
x =

tan(E1)

ρ

C′
y =−

tan(E1− I f intg(1+sin2(E1))
ρcos(E1)

)

ρ
,

(45)

where E1 is the entrance edge angle, I f int is the so called fringe field integral and g is the dipole gap.

Hence, the dipole’s edge element Twiss functions transport matrix reads:









βx,end

αx,end

γx,end









=









1 0 0

−C′
x 1 0

C
′2
x −2C′

x 1

















βx,start

αx,start

γx,start

















βy,end

αy,end

γy,end









=









1 0 0

−C′
y 1 0

C
′2
y −2C′

y 1

















βy,start

αy,start

γy,start









.

(46)

Therefore for our calculations, the Twiss functions at the beginning of a bending magnet have to be

substituted according to the following rule:

γx,k 7−→ γx,k+βx,kC
′2
x −2αx,kC

′
x

αx,k 7−→ αx,k−βx,kC
′
x

γy,k 7−→ γy,k+βy,kC
′2
y −2αy,kC

′
y

αy,k 7−→ αy,k−βy,kC
′
y,

(47)

3 Horizontal plane dispersion quadrupole derivate

The horizontal dispersion is originated in the dipoles (here with index j) and can be expressed analytically

as follows:

ηx,i =

√

βx,i

2sin(πνx)
∑
j

∫ L j

0
h j

√

βx, j(z)cos(|µx,i −µx, j(z)|−πν)dz, (48)
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where h j is the dipole’s curvature. Within this section all functions will refer to the horizontal plane,

the x subindex will not be made explicit. This time the integral along the dipole’s field has been left

explicit since, as shown in the previous section, the Twiss functions have a pronounced variation inside

the ALBA dipoles. Notice that equation 48 can be integrated similarly to the thick quadrupole formula

in section 2.5:

∫ L j

0

√

β j(z)cos(|µi−µ j(z)|−πν)dz= I j,c,1Ci, j,1+ I j,s,1Si, j,1, (49)

where the following definitions, have been used:

I j,c,1 ≡
∫ L j

0

√

β j(z)cos((µ j(z)−µ j))dz=

√

β j√
q j

sin(
√
q jL j)+

α j

[

cos(
√
q jL j)−1

]

q j

√

β j

I j,s,1 ≡
∫ Lk

0

√

β j(z) sin((µ j(z)−µ j))dz =−
cos(

√
q jL j)−1

q j

√

β j

.

(50)

These equations are integrated thanks to equation 23. Notice that here since we are considering dipoles

in the horizontal plane: q j 7−→ q j+h2j . Also we must keep in mind that β j corresponds to the horizontal

beta function at the beginning of the bending magnet but after having applied the edge effect. Equation

48 can be rewritten as:
ηx,i = ∑

j

h j

(

Î j,c,1Ri, j+ Î j,s,1Ti, j
)

, (51)

where Î j,c,1 ≡ I j,c,1√
β j

, Î j,s,1 ≡ I j,s,1√
β j

, Ri, j is the response matrix as in equation 1 and Ti, j is the sinus version

of it (let us call it sinus response matrix):

Ti, j =

√

βiβ j

2sin(πν)
Si, j,1. (52)

The reader should bear in mind that, in this section, the subindex j, unlike equation 1, refers to each one

of the bending magnets starting longitudinal position. Now equation 51 can be derived respect to the

quadrupole strengths by simply applying the chain rule:

dηx,i

dqk
=∑

j

h j

(

dÎ j,c,1

dqk
Ri, j+

dÎ j,s,1

dqk
Ti, j+ Î j,c,1

dRi, j

dqk
+ Î j,s,1

dTi, j

dqk

)

. (53)

The term
dRi, j

dqk
in the previous equation was already derived in section 2. The

dTi, j
dqk

term can be derived in a

similar way, this will be done in the next subsection. The other terms pending to be derived are
dÎ j,s,1
dqk

and

dÎ j,c,1
dqk

, those will be addressed in the second subsection. A comparison with the numerical calculations is

presented in appendix B.

3.1 The sinus response matrix derivate

Equation 52 derivate can be taken similarly to equation 2:

dTi, j

dqk
=

∂Ti, j
∂βi

dβi

dqk
+

∂Ti, j
∂β j

dβ j

dqk
+

∂Ti, j
∂ν

dν

dqk
+

∂Ti, j
∂ µi

dµi

dqk
+

∂Ti, j
∂ µ j

dµ j

dqk
, (54)
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Each of the derivatives with respect to the optical functions β , µ and the tune ν are calculated from

equation 52 and are expressed as follows:

∂Ti, j
∂βi

=

√

β j

4
√

βisin(πν)
Si, j,1

∂Ti, j
∂β j

=

√

βi

4
√

β jsin(πν)
Si, j,1

∂Ti, j
∂ν

=−π

√

βiβ j

2sin2(πν)
[Si, j,1cos(πν)+ s(µi−µ j)Ci, j,1sin(πν)]

∂Ti, j
∂ µi

=−δ (µi−µ j)
√

βiβ j+

√

βiβ j

2sin(πν)
Ci, j,1

∂Ti, j
∂ µ j

=δ (µi−µ j)
√

βiβ j−
√

βiβ j

2sin(πν)
Ci, j,1

(55)

The last two lines in the previous equations contain the Diract’s delta function which takes infinite value

at µi = µ j. However, the contribution of the two terms from the two last lines cancels out. Combining

equation 55 with equations 5, 6 and 14 we obtain the derivate of the sinus response matrix respect to thin

quadrupole strengths.

dTi, j

dqk
=∓

√

βiβ jβkLk

8sin(πν)sin(2πν)

[

Si, j,1
[

Ci,k,2+C j,k,2+2cos2(πν)
]

+Ci, j,1

[

S j,k,2−Si,k,2+ sin(2πν)(2θ̃ (µ j−µk)−2θ̃(µi−µk))+ s(µi−µ j)
]]

,

(56)

The thick quadrupole version reads:

dTi, j

dqk
=∓

√

βiβ j

8sin(πν)sin(2πν)

[

Si, j,1
[

Γi,k,2+Γ j,k,2+2Ik,0cos
2(πν)

]

+Ci, j,1

[

Σ j,k,2−Σi,k,2+ Ik,0sin(2πν)(2θ̃ (µ j−µk)−2θ̃(µi−µk))+ s(µi−µ j)
]]

,

(57)

3.2 The other terms

We still need to take the derivatives
dÎ j,s,1
dqk

and
dÎ j,c,1
dqk

. The term with Î j,s,1 can be calculated using the chain

rule again:

dÎ j,s,1

dqk
=

∂ Î j,s,1
∂β j

dβ j

dqk
+

∂ Î j,s,1
∂q j

dq j

dqk
=−

cos(
√
q jL j)−1

q jβ 2
j

β jβkLk

2sin(2πν)
C j,k,2+

∂ Î j,s,1
∂q j

δ j,k, (58)

where, the horizontal plane sign has been taken and δ j,k is the Kronecker’s delta which will only con-

tribute when the quadrupole index corresponds to a bending magnet. The thick quadrupole form is:

dÎ j,s,1

dqk
= Î j,s,1

Γ j,k,2

2sin(2πν)
+

∂ Î j,s,1
∂q j

δ j,k. (59)

The term with Î j,c,1 is slightly more complicated since it implies taking the derivative of the α j function:

dÎ j,c,1

dqk
=

∂ Î j,c,1
∂β j

dβ j

dqk
+

∂ Î j,c,1
∂α j

dα j

dqk
+

∂ Î j,c,1
∂q j

dq j

dqk
. (60)
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The α j term can be solved since:

dα j

dqk
=−1

2

d

ds j

dβ j

dqk
. (61)

Combining the previous equation with the horizontal plane case (minus sign) of equation 6 we obtain:

dα j

dqk
=
1

2

d

ds j

[

β jβkLk

2sin(2πν)
C j,k,2

]

, (62)

which after some algebra becomes:

dα j

dqk
=− βkLk

2sin(2πν)

[

α jC j,k,2+S j,k,2

]

. (63)

Now we can express analytically the contribution of the Î j,c,1 derivative:

dÎ j,c,1

dqk
=

α j

[

cos(
√
q jL j)−1

]

q jβ j

βkLk

2sin(2πν)
C j,k,2

−
cos(

√
q jL j)−1

q jβ j

βkLk

2sin(2πν)

[

α jC j,k,2+S j,k,2

]

+
∂ Î j,c,1
∂q j

δ j,k,

(64)

which can be simplified and for the thin quadrupole case becomes:

dÎ j,c,1

dqk
=

βkLk

2sin(2πν)
Î j,s,1S j,k,2+

∂ Î j,c,1
∂q j

δ j,k, (65)

while in the thick quadrupole case it is written as:

dÎ j,c,1

dqk
=

Î j,s,1Σ j,k,2

2sin(2πν)
+

∂ Î j,c,1
∂q j

δ j,k, (66)

3.3 Complete dispersion derivate formula

Grouping all results together in the thick quadrupole case, equation 53 it becomes:

dηx,i

dqk
=

[

∂ Îk,c,1
∂qk

Ci,k,1+
∂ Îk,s,1
∂qk

Si,k,1

]

hk
√

βiβk

2sin(πν)

−∑
j

h j

√

βiβ j

8sin(πν)sin(2πν)

[

Î j,c,1
[

Ci, j,1

[

Γi,k,2+Γ j,k,2+2Ik,0cos
2(πν)

]

+Si, j,1
[

Σi,k,2−Σ j,k,2+ Ik,0sin(2πν)(2θ̃ (µi−µk)−2θ̃(µ j−µk)− s(µi−µ j))
]]

+ Î j,s,1
[

Si, j,1
[

Γi,k,2−Γ j,k,2+2Ik,0cos
2(πν)

]

+Ci, j,1

[

−Σ j,k,2−Σi,k,2+ Ik,0sin(2πν)(2θ̃ (µ j−µk)−2θ̃ (µi−µk)+ s(µi−µ j))
]]]

.

(67)

Where the first two terms only contribute when the quadrupole field number k is also a bending magnet

and hk 6= 0. Next, we make those two terms explicit:

∂ Îk,s,1
∂qk

=
1

q jβ j

[

sin(
√
q jL j)

2
√
q j

L j+
cos(

√
q jL j)−1

q j

]

∂ Îk,c,1
∂qk

=
cos(

√
q jL j)

2q j

L j−
sin(

√
q jL j)

2q
3/2
j

−α j

∂ Îk,s,1
∂qk

(68)



ALBA Project Document No: Page: 15 of 18

ACDIV-2017-01 Rev. No.: 0.0

4 Off-diagonal response matrix and vertical plane dispersion

A.Franchi [2] found an expression for the off-diagonal response matrix and vertical plane dispersion

change as a function of the skew quadrupole strengths. In the next sections we will make use of that

same formulas which we repeat here just for completeness. First, the off diagonal response matrix R
(xy)
i j

and R
(yx)
i j derivatives are:

dR
(xy)
i j

dsk
≃1

8

√

βi,xβi,yβk,xβk,y

[

1

sin[π(Qx−Qy)]

[

cos(τx,ki− τy,ki+ τy,i j)

sin(πQy)
− cos(τx,ki− τy,ki+ τx,i j)

sin(πQx)

]

+ [
1

sin[π(Qx+Qy)]

[

cos(τx,ki + τy,ki− τy,i j)

sin(πQy)
+

cos(τx,ki+ τy,ki+ τx,i j)

sin(πQx)

]]

dR
(yx)
i j

dsk
≃1

8

√

βi,yβi,xβk,xβk,y

[

1

sin[π(Qx−Qy)]

[

−cos(τx,ki− τy,ki− τx,i j)

sin(πQx)
+

cos(τx,ki− τy,ki− τy,i j)

sin(πQy)

]

+ [
1

sin[π(Qx+Qy)]

[

cos(τx,ki + τy,ki− τx,i j)

sin(πQx)
+

cos(τx,ki+ τy,ki+ τy,i j)

sin(πQy)

]]

,

(69)

where sk represents the k− th skew quadrupole strength and τx,i j and τy,i j are phase advance differences

defined as follows:

τz,ab =











µa−µb−πQz i fµa > µb

µa−µb+πQz i fµb > µa

,z= x,y (70)

Also, according to reference [2], the vertical plane dispersion derivative is expressed:

dηy,i

dsk
=

√

βy,iβy,k

2sin(πνy)
ηx,kcos(τy,ik), (71)

In the case of the skew magnets, the thick magnet formula has not been used. At ALBA those magnets

are quite thin and are located at places where the optical functions vary quite linearly. Hence, it is enough

to use the average of the optics functions.

5 Horizontal plane dispersion dipole derivate

LOCO does not considers the dipole curvature as a fitting parameter for the dispersion. However, as

becomes clear inspecting equations 48 and 51, there is a close relation between the dipole’s curvature and

the dispersion function. In this section the analytical derivate of the dispersion with respect to the dipole’s

curvature is compared to the numerical results. Again, we will consider only the thick quadrupole case.

Once more we use the chain rule to evaluate the derivate of equation 51:

dηx,i

dh j

=
∂ηx,i

∂h j

+
∂ηx,i

∂α j

dα j

dh j

+
∂ηx,i

∂q j

dq j

dh j

, (72)

where the first term is much more important than the others. Using equations 43 and 47 the following

indirect dependencies are derived:
dα j

dh j

=−β jtan(E1)

dq j

dh j

=2h j.

(73)
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Hence all three terms in equation 72 can be written in terms of already known expressions:

∂ηx,i

∂h j

=Î j,c,1Ri, j+ Î j,s,1Ti, j

∂ηx,i

∂α j

dα j

dh j

=−h jRi, jtan(E1)
cos(

√
q jL j)−1

q j

∂ηx,i

∂q j

dq j

dh j

=2h2j

[

∂ Î j,c,1
∂q j

Ri, j+
∂ Î j,s,1
∂q j

Ti, j

]

.

(74)

6 Conclusions

An explicit and analytical form of the ORM and dispersion function derivatives has been calculated.

This allows to implement it in the LOCO code that performs the fit, replacing the numerical assessment

used by the standard version of LOCO. The LOCO fit procedure has been made faster by a factor 4 by

replacing the numerical coupled constant path (NCCP) simulations by the analytical uncoupled constant

energy (AUCE) expressions. In particular, the LOCO fit included in the ALBA weekly startup procedure

will take 2 min instead of 8min. The simplifications in the formulas have an impact below at the 10−4

level in beta beat and quadrupole strength corrections. For our purposes, the present level of agreement

is satisfactory and the new LOCO script will be used in the ALBA storage ring weekly setup procedure.

A Appendix A: Numerical comparison for ALBA ORM

For the numerical comparison we will use the Matlab based tracking code AT [5] . The analytical

calculation of the response matrix derivative with respect each to each one of the 112 quadrupoles and

the 32 combined function bending magnets using equation 2 takes 0.7 seconds. On the other hand,

calculating the numerical difference of two response matrices having changed one quadrupole takes

0.4 seconds. Hence the analytical method is potentially 32 times faster. As stated previously, the case

described so far includes only constant energy calculations. The error associated to that simplification has

been numerically evaluated for the ALBA case, and corresponds to a 0.28% rms error in the horizontal

plane while in the vertical plane there is no significant effect. Next the previously described formulas

will be compared with numerical constant energy simulations. Since, at ALBA, the beta functions in the

combined function dipoles have a pronounced hyperbolic variation, those cases will be treated separately

from the rest of normal quadupoles.

ORMS error

Hor.Plane Vert.Plane

thin thick thin thick

quads dipoles quads dipoles quads dipoles quads dipoles

whitout coupling 1.18% 10.72% 0.00% 0.00% 1.67% 1.21% 0.00% 0.00%

0.5% coupling 1.18% 11.03% 0.04% 1.14% 1.74% 1.45% 0.40% 0.28%

Table 1: ORMS error of equation 15 and 42 respect to the numerical constant energy response matrix derivate.
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B Appendix B: Numerical comparison for the ALBA dispersion deriva-

tive

This time, only the thick quadrupole case (equation 67) is considered. The results have been compared to

the constant energy 4D simulations. The ORMS difference of the 4D simulations respect to the constant

frequency 6D simulations is 0.28% both with and without coupling. Since, at ALBA, the beta function

in the combined function dipoles has a pronounced minimum, those cases will be treated separately from

the rest of normal quadupoles.

ORMS error quads dipoles

whitout coupling 0.04% 0.05%

0.5% coupling 0.22% 2.00%

Table 2: ORMS error of equation 67 respect to the numerical constant energy dispersion derivate.

C Appendix C: Analytical uncoupled constant energy LOCO versus nu-

merical coupled constant path LOCO results

The thick quadrupole analytical formulas described so far have been used to speed up the LOCO response

matrix and dispersion derivatives calculation.

The analytical uncoupled constant energy (AUCE) formulas assume neither there is any change of

the off-diagonal response matrix with respect to the quadrupoles strengths, nor that there is any change

of the diagonal response matrix with respect to the skew quadrupole strengths. Also, the AUCE formulas

do not take into account the constant path corrections that are due in electron machines as ALBA.

In this section the fitting results using such formulas are compared to the numerical coupled constant

path (NCCP) LOCO method. In the next subsections the LOCO fit is compared on 60 simulated lattices

and also on 20 real measurement data sets. In the case of the simulated lattices, the fitted machine

functions can be compared to the simulated ones. In the case of the measurement data sets, the NCCP

LOCO fits are compared with the AUCE LOCO fit.

C.1 Random Simulated latices

For the comparison 60 simulated LOCO measurements have been used and the fit result has been com-

pared to the modeled machine functions. Several LOCO fitting schemes have been used: the quadrupole

part is fitted with the 112 quadrupoles (112Q) or also using as a fit parameter the quadrupole strengths of

the combined function dipoles (112Q+32D). The skew part has been fitted using the 32 available skew

magnets (32S) or using the 120 sextupoles as coupling sources (120S). In each case, 5 fit iterations are

used. The fitting algorithm used was the scaled Levenberg Marquardt with λ = 0.05.

Dispite the AUCE approximation, as table 3 shows, the LOCO fit agrees remarkably well with the

NCCP LOCO fit. This is not very surprising since a small error in the derivatives as shown in tables 2

and 1 is washed away in the iterative LOCO process. Regarding the total LOCO evaluation time, using

the analytical formulas only reduces a factor 3 or 4 improvement. The improvement is small compared to

the calculation time difference between the formulas and the numerical simulations. However, the total

LOCO fit time includes other tasks like the the LOCO matrix SVD calculation or the fitting structure

construction.
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ORMS error wrt simulation
112Q 112Q+32D

32S 120S 32S 120S

AUCE NCCP AUCE NCCP AUCE NCCP AUCE NCCP

∆βx/βx[%] 1.55 1.54 1.55 1.54 0.92 0.91 0.92 0.92

∆βy/βy[%] 2.47 2.47 2.47 2.47 1.00 0.99 1.00 1.00

∆ηx/ηx[%] 1.03 1.02 1.03 1.02 0.66 0.66 0.66 0.66

∆ηy[mm] 0.91 0.92 0.30 0.35 0.91 0.91 0.29 0.29

∆εy/εx[%] 0.02 0.02 0.01 0.01 0.02 0.19 0.01 0.01

∆θ [mrad] 5.67 5.70 2.90 2.97 5.62 5.64 2.81 2.80

∆kquad/kquad [%] 0.03 0.03 0.01 0.01

Elapsed time [min] 3.69 10.09 4.60 16.48 4.13 11.77 5.07 18.11

Table 3: LOCO fit ORMS error for various quantities, for the AUCE and NCCP cases. In both cases the fit result

is compared with the model machine functions at every lattice element. Also the quadrupole fit parameters and the

total LOCO analysis time are compared.

C.2 Measured data Loco fit differences

In this chapter the differences between the AUCE and NCCP LOCO fits to 20 measured data sets are

listed. The data sets where acquired from 09/05/2016 to 31/10/2016 as part of the ALBA routine startup

procedure. For each case two fitting parameters schemes are used: 112Q+32S and 112Q+32D+120S as

during the startup procedure. Table 4 shows a very good agreement for all the machine functions of the

two LOCO fits. The typical CPU time for the NCCP LOCO fits is 8min while for the AUCE and NCCP

LOCO fits is 2min.

ORMS difference 112Q+32S 112Q+32D+120S

∆βx/βx[%] 0.03 0.05

∆βy/βy[%] 0.02 0.04

∆ηx/ηx[%] 0.44 0.78

∆ηy[mm] 0.03 0.06

∆εy/εx[%] 0.00 0.00

∆θ [mrad] 0.26 0.33

∆kquad/kquad [%] 0.00 0.01

Table 4: LOCO fit ORMS difference.


