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Abstract

We have developed a 2D finite element-based software

for Matlab to study non-resonant effects in BPMs of arbi-

trary geometry, in particular the geometric nonlinearities.

The developed code called BpmLab utilizes an open-source

tetrahedral mesh generator DistMesh, combined with a short

implementation of FEM with linear basis functions to find

the electrostatic field distribution for boundary electric po-

tential excitation. The BPM response as a function of beam

position is calculated in a single simulation for all beam

positions using the potential ratios, according to the Green’s

reciprocity theorem. The code offers ways to correct the

geometrical nonlinear distortion, either by polynomials or

by direct inversion of the electrode signals through numeri-

cal optimization. This work is an overview of the BpmLab

capabilities to date, including its extensive benchmarking

and validation against other methods.

INTRODUCTION

At the initial design stage of any beam position monitor

(BPM) lies its numerical characterization and optimization

to fit the machine requirements. The common nowadays

tools for electromagnetic (EM) simulations are usually an

overkill for BPM simulations: they are either expensive

(CST, Ansys, GdfidL), or free but complex (ACE3P, POIS-

SON), requiring users to possess specific knowledge of ge-

ometrical modeling in 2D/3D and the tool itself. However,

BPMs used in accelerators with ultra-relativistic beams are

usually designed to be resonance-free and their position char-

acteristic to be independent from the accelerator’s operating

frequency. Hence, the numerical characterization of a BPM

does not need to be complicated and 2D approximations can

be made to simulate the behavior of most BPM types and

provide their optimization.

At ALBA, characterization of storage ring and booster

BPMs has previously been done with the 2D boundary ele-

ment method (BEM) [1, 2], and lately cross-checked with

ACE3P [3]. However, though sufficient for ALBA’s needs,

the BEM code was limited to only two simple BPM geome-

tries, while using the 3D time domain solver of ACE3P is

rather complicated for such tasks.

The electrostatic (ES) approach to numerical BPM char-

acterization is not new and has been used for over a decade

in various accelerator laboratories, e.g. SLAC [4], CESR [5]

and FNPL [6]. However, together with post-processing, this

approach usually requires extra effort of additional software

to get the final results.

Matlab is, perhaps, themost common tool for mathematics

and data analysis in the accelerator community, with its

(a) Modeling the BPM geometry

by metric functions prior to trian-

gular meshing.

(b) Optimized equilateral Delau-

nay mesh of the BPM’s vacuum

interior, generated by DistMesh.

Figure 1: Modeling the pilot-BPM in BpmLab by com-

bining a circle with arcs as functions of radii and inter-

nal/orientation angles.

mighty Middle Layer [7] used in the control systems of a

number of accelerators, including ALBA. Thanks to a vast

amount of built-in and open-source code solutions offered

by Matlab, we have developed BpmLab: a simplistic yet

powerful code for electrostatic analysis of BPMs of arbitrary

geometry and free electrode arrangement in 2D.

METHODOLOGY

Some functionality, mentioned in this work, already exists

in Matlab to some extent as parts of paid toolboxes. Our

intention, however, is to create a free and easy to use tool,

while bringing some novelty to the table.

FEM to Solve Laplace’s Equation

In order to solve Poisson’s equation we have used a short

numerical implementation of Laplace’s equation solver in

2D with mixed (Dirichlet + Neumann) boundary conditions

for unstructured grids with linear triangular or quadrilateral

elements [8]. Here, the problem is solved employing the

finite element method (FEM) using the standard Galerkin

discretization scheme. The FEM solver calculates the elec-

trostatic potential value in each mesh node based on the

boundary conditions and any volume forces, if they exist.

Meshing

For meshing we are using DistMesh [9], which is a simple

Matlab code for generating constrained equilateral Delaunay

meshes with node coordinates optimization by a force-based

smoothing procedure. Here the geometry specification is

done by signed distance functions, which give the shortest

distance from every node to the boundary of the domain.

The sign is negative inside the region and positive outside,



Fig. 1(a), and tells the algorithm which nodes to exclude

from the final mesh, Fig. 1(b).

Figure 2: Meshed model of the ALBA storage ring BPM,

whose optimized non-uniform Delaunay mesh consists of

8409 triangles on 4558 nodes.

Combining the FEM electrostatic solver with DistMesh

opens plenty of possibilities for 2D EM modeling, in partic-

ular useful for beam instrumentation engineering.

For the moment, we are omitting the Neumann boundary

conditions and quadrilateral mesh elements, but focus on

fine-tuning the triangular mesh with Dirichlet-type bound-

aries. We have modified the FEM and DistMesh codes and

improved their capabilities, e.g. by adding the manual mesh

density control in fine geometrical areas (e.g. around the

electrodes of ALBA BPM in Fig. 2), the boundary node

search for potentials assignment, and the ability to accept

any function f as the source of electrostatic field (sometimes

also called volume force or space charge).

Convergence

In order to test the basic reliability of the FEM solver

we check convergence of several parameters as functions of

mesh edge size. For analytic shapes the error norms L1 (L2)

are calculated by taking length of vectors whose components

are the difference (squared difference) between analytic and

FEM solutions in the mesh nodes.

Additionally, a quantity proportional to the system’s stored

electrostatic energy is calculated, which matches the theoret-

ical result for analytical shapes, and estimates convergence

for more complex geometries:

ε =
1

2
ǫ0

∫
V

E2dV ≈
1

2

∑
t

Et
2 At [arb. units] (1)

where ǫ0 = 1 and E2 is the squared norm of electric field. In

Eq. (1) the label t is used to indicate the triangular element

we are on and At corresponds to its area.

Consider solving the Poisson’s equation −∇2φ = f for

each of the two following analytic unit-sized shapes with

grounded Dirichlet boundary conditions, which have known

analytic solutions:

1) Circle S1 with radius R = 0.5:


φxx + φyy = −4, x2 + y

2 < R2

φ = 0, x2 + y
2
= R2

Solution: φ(x, y) = R2 − x2 − y
2.

(2)

(a) FEM solution on a circle

meshed with 145 triangles on 89

nodes.

(b) Difference between FEM and

the exact solution, Eq. (2).

Figure 3: Comparison between the FEM and the exact solu-

tion of the Poisson’s equation for the unit circle shape.

(a) FEM solution on a square

meshed with 211 triangles on 128

nodes.

(b) Difference between FEM and

the exact solution, Eq. (3).

Figure 4: Comparison between the FEM and the exact solu-

tion of the Poisson’s equation for the unit square shape.

2) Square S2 with side length a = 1:


−∇2φ = 2x(a − x) + 2y(a − y), (x, y) ∈ S2\ΩS2

φ = 0, (x, y) ∈ ΩS2

Solution: φ(x, y) = xy(a − x)(a − y).

(3)

The exact solutions were compared against the ones ob-

tained with the FEM solver achieving excellent accuracy of

under 1 mV even for scarce mesh, Figs. 3 and 4.

Plotting the L1 and L2 norms as functions of the decreas-

ing mesh size (thus, the increasing number of nodes), reveals

an expected converging trend for norms of S1 and S2, Fig. 5,

and an interesting behavior of the norms of S2 which appear

smoother. This is because a square is much better approxi-

mated by triangles than a circle.

Figure 5: Error norms L1 and L2 for the circle and square

as functions of the number of nodes.



SIMULATIONS AND BENCHMARKING

Green’s Reciprocity Theorem

Instead of simulating a beam sweep for multiple beam

positions, as common with 3D time domain EM solvers

in application to BPM modeling, the ES approach offers a

similar outcome by a much faster procedure offered by the

Green’s reciprocity theorem (GRT): obtaining the electrode

signals for all beam positions in a single calculation.

In the specific case that we are interested in, GRT states

that the charge induced on an electrode surface qe due to

a test charge q at (x0, y0) position is proportional to the

potential φ at that same position when the test charge is

absent and the electrode is set to a potential V0, see [5]:

qeV0 = −qφ(x0, y0) (4)

Therefore, φ(x0, y0) is the solution to the problem of cal-

culating the signal of an electrode, up to a multiplicative

constant, as a function of the charge location. This constant,

qe in Eq. (4), is of no importance because we later compute

the normalized ratio of potentials, which is equivalent to the

normalized ratio of electrode signals. The problem comes

down to computing φi (x, y) for each electrode i = 1..4 for

every mesh node inside the chamber.

We test and validate the developed codes on a 2D model

of a showcase BPM labeled pilot-BPM. It has 1 mm thick

electrodes spanning α = 30o each, mounted flush in a 0◦/90◦

orthogonal arrangement in the circular vacuum chamber of

radius R = 10 mm and gap of 1 mm.

In practice, the application of GRT comes down to

exciting one electrode with non-zero voltage and grounding

the others, including the vacuum chamber. The resulting

potential φ1(x, y) and mesh is then rotated/mirrored to

get φ2,3,4(x, y), as illustrated with the pilot-BPM in Fig. 6.

Potential values beyond the mesh nodes are found by linear

interpolation which is sufficient due to working with linear

finite elements.

BpmLab offers several standard difference over sum (DOS)

treatments of BPM signals, which can be applied to a given

BPM geometry according to its electrode arrangement.

In particular, the normalized “raw” position characteristic

for the circular pilot-BPM is calculated conventionally as

xraw =

φ1 − φ2

φ1 + φ2

, yraw =

φ3 − φ4

φ3 + φ4

(5)

Combining together the potentials φi (x, y) for the pilot-

BPM with Eq. (5), the normalized horizontal and vertical

beam positions in the locations of mesh nodes are obtained,

Fig. 7(a). From here they can be interpolated on a rectangular

grid and calibrated to mm by scaling factors kx,y which,

for circular beam pipes, can be simply approximated by

kx,y = R/2, see [10].

Computing the 29 × 29-point beam position map (±7mm,

step of 0.5 mm) for the pilot-BPM results in a typical “pin-

cushion” characteristic map, Fig. 7(b).

(a) Original calculation of

φ1 (x, y) by exciting the right

electrode to 1 volt.

(b) Rotating φ1 (x, y) by 180◦ to

obtain φ2 (x, y).

(c) Rotating φ1 (x, y) by 90◦ to

obtain φ3 (x, y).

(d) Rotating φ1 (x, y) by 270◦ to

obtain φ4 (x, y).

Figure 6: One electrostatic solution rotated 3 times to emu-

late 3 other excitations.

(a) Normalized DOS ratios of

φ1. .4 calculated in mesh nodes.

(b) Interpolated and calibrated

beam position map.

Figure 7: Simulating BPM response for the pilot-BPM: blue

dots are the normalized DOS values in node locations, black

dots are the true beam positions, and red ones form the

nonlinear response map.

Validation Against Other Methods

It is important to validate the results obtained by BpmLab

with the results obtained by other available methods and

tools. The pilot-BPM geometry was simulated by each of

the following methods, and differences between position

maps, treated by Eq. (5), are shown.

a) BpmLab versus the Wall Current Method (WCM).

For BPMs mounted in circular vacuum chambers the

sensitivity function can be estimated analytically by inte-

grating the wall current distribution induced on an electrode

due to a line-charge as a function of (x0, y0,α,R), [10].

The difference between the beam position maps calcu-

lated by BpmLab and WCM for the pilot-BPM is below

30 µm in most of the map region except its corners, Fig. 8 (a).



(a) BpmLab versus the Wall Cur-

rent Method.

(b) BpmLab versus the Boundary

Element Method.

(c) Electrostatic 3D simulation by

CST of 1 mm “slice” of the BPM.

(d) BpmLab versus the Electro-

static solver of CST ES.

(e) A snapshot in time of the 3D

Wakefield simulation by CST PS.

(f) BpmLab versus the Wakefield

solver of CST PS.

Figure 8: Differences between beam position maps of the

pilot-BPM, calculated by BpmLab and other methods.

b) BpmLab versus the Boundary Element Method

(BEM). BEM is based on the numerical solution of the 2D

electrostatic problem of finding the induced charge on the

boundary of the domain containing some charge ρ(x0, y0)

that represents the relativistic beam. The BEM solver

available at ALBA [2] shows mainly a 20 µm difference

between the response map calculated by BpmLab, Fig. 8 (b).

c) BpmLab versus the CST Electrostatic solver.

Potential excitation of the right electrode to 1 volt is

simulated by the Electrostatic solver of CST in Fig. 8(c).

After post-proce,ssing comparing the maps calculated with

CST ES and BpmLab show that they essentially overlap

with under 10 µm difference, Fig. 8(d).

d)BpmLab versus theCSTWakefield solver. Finally, the

pilot-BPM was simulated and mapped with the time domain

wakefield solver of CST Particle Studio, Fig. 8(e). The 3D

model consisted of 200k hexahedral mesh cells; the beam

scan was modeled by a single Gaussian relativistic bunch

(στ = 5 mm, Q = 10−8 C) traveling for 500 ps (80 mm) of

wake length. The resulting difference with the response map

calculated by BpmLab is mainly below 30 µm, Fig. 8(f).

NONLINEARITY CORRECTIONS

Nonlinear distortion of the BPM response can be an issue,

especially when large beam offsets are foreseen. Correction

of such nonlinearities is integrated into BpmLab through:

1) calculation of polynomial coefficients of a non linear

fit of two normalized quantities, xraw, yraw, derived from

potentials φ1..4. These polynomials allow accurate real-time

reconstruction of the transverse beam position taking into

account the coupling between electrodes [10, 11]. Low-

power polynomials are often sufficient for good precision:

Fig. 9 shows the result of applying a 9th order 2D polynomial

to correct the DOS distortion of the pilot-BPM in Fig. 7(b).

(a) Corrected map. (b) Error of correction in mm.

Figure 9: Response map of the pilot-BPM, corrected by the

9th order 2D polynomial.

2) direct inversion of the electrode voltages to correspond-

ing beam position using the model behavior of a certain

BPM. This procedure is intended for offline post-processing

through iterative numerical optimization [5], [11], [12] and

promises much more precision over polynomial fits.

This algorithm is implemented in BpmLab for an arbi-

trary 4-electrode BPM geometry. The BPM characteristic

is modeled by a set of calculated potentials ϕi, i=1..4 on a

non-uniformly distributed array of triangular mesh nodes.

Briefly, to invert a set of voltages Vi, i=1..4 to the unique

beam position inducing them, the following target function

is minimized

f (x, y) = f 2
h (x, y) + f 2

v (x, y) → min , (6)

where

fh(x, y) =
∆hφ(x, y)

Σhφ(x, y)
−

∆hV

ΣhV
(7)

and a similar expression for fv(x, y).

To minimize the target function (6) the gradient descent

method (GDM) is used, which presupposes that the gradient

of the function can be computed numerically or analytically.

The DOS ratios of φ and V in Eq. (7) follow the particular

DOS convention, e.g. Eq. 5.

The search starts at a certain starting point (x0, y0) and,

as many times as needed, moves from (xi , yi ) to (xi+1, yi+1)

by minimizing along the line in the direction of the local

downhill gradient, expressed analytically:



(a) Corrected map. (b) Error of correction.

Figure 10: Correction based on voltage inversion through

optimization. Here the self-generated BPM signals are used

for backward convergence test of the FEM method.

Figure 11: Amount of iterations (represented in bar height

and color) it took to invert 4 × 841 sets of self-generated

signals back to 841 beam positions.

∇ f (xi , yi ) =

[
∂ f (xi , yi )

∂x
;

∂ f (xi , yi )

∂y

]
(8)

The starting point is found by yet another minor optimiza-

tion routine: the nearest node search, which looks for the

node for which the normalized (xraw, yraw) of the potentials

resemble the corresponding ratio of the voltages.

Assuming that φi are piece-wise planar functions over the

triangulated region, the partial derivatives of ∂φi implied

in (8) are found numerically in every node as first order

approximations.

The inversion procedure was tested for backward con-

vergence on the FEM model of the pilot-BPM using self-

generated signals on a square grid of beam positions. It has

shown excellent beam position recovery, Fig. 10(a), with

machine precision, Fig. 10(b). The inversion process took

under 2 minutes for 29 × 29 map points taking 3 iterations

on average to reach the optimum for each position, Fig. 11.

We have also made an attempt to restore the beam position

map based on voltages, generated by the CST Wakefield

solver for same map parameters, which resulted in achieving

< 50µm accuracy across most part of the map, Figs. 12.
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CONCLUSION

We have created a functional tool to ease the process of

BPM modeling for the Matlab platform. Performing a sin-

(a) Corrected map. (b) Inversion iterations.

Figure 12: Correction based on voltage inversion, performed

on voltages simulated with the Wakefield solver of CST PS.

gle electrostatic simulation on a modern desktop PC takes

negligible amount of time for a meshed BPM model with

some 10k nodes, so characterizing BPMs becomes a fast

seamless task. The code offers ways to correct for the non-

linear geometrical distortion effect via polynomials, or by

voltage inversion through numerical optimization, naturally

using the mesh properties.

BpmLab has been extensively benchmarked against a num-

ber of other methods and commercial tools. It has shown to

be computationally quick and easily adjustable to any BPM

geometry, assuring its precise meshing and reliable results.
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