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Multipolar expansion of magnetic field
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The on axis magnetic field can be expanded into multipolar components (dipole,
guadrupole, sextupole, octupoles and higher orders)
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Hill’'s equation with nonlinear terms

Including higher order terms in the expansion of the magnetic field

_ M +ii _ "" B 0. 9x" normal multipoles
By +|BX — Bop0|:z kn (S) IIJn(S) (X+Iy)n:| 0100 (0,0)
. 1 9"B
= X skew multipoles
B0100 6X (0,0)

the Hill's equations acquire additional nonlinear terms

d?x 1 B Yk, (s) +ij ,(S) . \n
dsﬁ[pz(s) Iq(s)jx—R > <x+uy)}

2

d y+k1(s)y:_|m& ka(9) :!ijn(s) (Xﬂy)n}

dSZ n=2

No analytical solution available in general:
the equations have to be solved by tracking or analysed perturbatively
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Quadrupoles: chromatic aberrations

Length L
(Bp)[Tr = = 3.3356 TME[GeV]
St th b, = 1 aBy -
reng : = Bp) ox
Kicks on particle: AX'=—b,Lx Ay'=b,Ly
b Ap
: A b = 2 _=Dh(1- 0=——
Chromatic aberration: ,(0) 1+ 0) ,([1-9) )
\ 5 >0
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Example: test lattice

EBetafunctions [m] K/dP [m]

<10 [Step 1: Chromaticity not corrected j < 0.
0=+1.5%

| D =0 /ﬂ\ ;
B

Mo

7 o v o v w5 7 == w s W Ee W s W Wy s w w0

Bends(5.625 deg) Quadrupoles

1L - BU5.99 m g _( Ox = 35.4503 0z = 11.3976 Ex - 8. 176-0009 @ 6 GeV
(periodic) =V 0k = -96.1576 [z = -30.4910 Al = 0.00028

dn/p = -1.50 % Ox = 37.2591 0z = 11.8440

do/p = 1.50 % Ox = 34. 1891 0z = 10.94¢5  §=+1.5% (A.Streun, PSI)

ESRF lattice with original optics for dispersion free straights
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Chromaticity

(gradient error Ab, ds) x (one turn matrix M) = (new one turn matrix M)

Gradient error due to chromatic aberration: + Ab, = ¥ b, (hor./vert.)

1 0 cos27Q  fBsin27Q) ( cos2rmQ - Bsin27Q
[ibzé'ds JX ~1sin27Q cos27Q | | -4sin27mQ  cos271Q

3Tr(M) = cos2nQ = cos27(Q + AQ) = cos27Q + 5 b,dBsin27Q ds

AQ<<1l - AQ=F;LtDb,opfds

Natural chromaticity: Sy = % =¥ § b,(s)A((s) ds

Light source: Small emittance — Strong quadrupoles - Large and
negative natural chromaticity (¢, = -50 ... -100)

- Head-tail instability

- low energy acceptance
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Example: natural chromaticity (I)

Beta-X [m] Beta-Y [ml
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3 2 1 0 1 dp;p o 3 2 1 0 1 dD;D -
Horizantal Tune V(S) Vertical  Tune
377 \ 12,41
| 12.2-
38 . ey B o
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1 \ 11.61
30 11,44
x| 11.2
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Example: natural chromaticity (1)

Horizontal : . YVertical:

Poincare Plot of phase space

X < 60\/83 mm X 2.89 mrad Y1 < 58J83 mm Y"1« 4.53 mrad

(A-Streun, PSI)

Limitation from 160 mm x 160 mm vacuum chamber
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Sextupole magnets

Nonlinear magnetic fields are introduced in the lattice (chromatic sextupoles)
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Chromaticity correction with sextupoles

+B
Yy
Chromaticity correction Quad:lé E;-o|e Sextupole
Sextupole: B,(X) =$B"x’
Local gradient;  B', (X) =B"X / X \\// >
- +D3

Strong “chromatic” sextupoles guarantee the focussing of off-energy particles

Dipole Fextupole Quadrupole
|
strong sextupoles have a significant impact on the electron dynamics

— additional “harmonic” sextupoles are required to correct nonlinear perturbations
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Chromaticity correction

Quadrupole: Sextupole:
, __1 98 1 1 0°B,
b3 ==

AX'= _b2 LX AX' = _b3L(X2 _ yZ)

Ay'=Db,Ly Ay'= 2b,Lxy
b
' ions: b =——"—=Dp (1-

Chromatic aberrations: ' (0) 1+ 0)  (1-0)
Sextupole in dispersive regions:  x - x+DJ y >y

Kicks on a particle (keep up to second order in products of x, y, 8):

AX':—bZLX AX'=—5(2—y2)252

—> Chromaticity correction for 2b,LD = b,L (good)
- non linear kicks... (bad)

G. Benedetti —Nonlinear Beam Dynamics- 17/06/2010 11/36



Chromaticity correction

&,y =t $[20,(9)D(5) ~b,(9)1B, , (9ds
=+1(> 2bLB ,D- > bLB,)=0 (orpositive)

sext guads

Linear system: 2 families of sextupoles SF, SD

L[+ZSFﬁXD +ZSDIBXDJ X((QL)SFJ :1£+unads(b2|—):8x} N

MN-TB0 -3B0 ), (0w, | -Tbtp, |~ e B

- SF locations: D 1, B, 1, B, |
- SD locations: D 1, B, |, B, 1
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Example: chromaticity correction (I)

Beta-X [m] Befa-Y [ml
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Example: chromaticity correction (l1)

Horizontfal : N Vertical: y
Poincare Plot of phase space

Breakdown of

dynamic acceptance Vertical —» horizontal

coupling
B * >
IX1 < 6505 mm X< 310 mrad Y1 < 56,83 mm 1Y’ < 453 mrad
(A-Streun, PSI)

Limitation from 160 mm x 160 mm vacuum chamber
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Phenomenology of nonlinear motion (1)

The orbit in phase space for a system of linear
Hill's equation are ellipses (or circles)

The frequency of revolution of the particles is
the same on all ellipses

The orbit in the phase space for a system of
nonlinear Hill's equations are no longer simple
ellipses (or circles);

The frequency of oscillations depends on the
amplitude
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Resonances

m=5n=0;p=1

When the betatron tunes satisfy a resonance relation |

D'a_ Turn 2 Turn 1

mQ+nQ, =r N

the motion of the charged particle repeats itself ot L » Jums
periodically o Tums

04p : Tur 4
If there are errors and pgrturbations Wh_ich are 5-th order resonance phase space plot
sampled periodically their effect can build up and (machine with no errors)
destroy the stability of motion C emusmsay
The resonant condition defines a set of lines in the R
tune diagram T
The working point has to be chosen away from Nyt <l
the resonance lines, especially the lowest order il 2N N
O n e ! 13 131 1?;‘.02”1 e, 1Qé.3 134 135
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Phenomenology of nonlinear motion (I1)

Stable and unstable fixed points appears which Phase space plots of close to a 5"
are connected by separatrices order resonance

0.4

041

Islands enclose the stable fixed points sl

01r

On a resonance the particle jumps from one

island to the next and the tune is locked at the ol
resonance value o2l W
03t -
o4k “"-‘:\“ {‘-_‘J;:_;,.
regions of chaotic motion appear . -
05 04 03 02 41 0 01 02 03 04 04

Tune ws amplitude
0.208 . . .

The region of stable motion, called dynamic
aperture , is limited by the appearance of

unstable fixed points and trajectories with fast 0204
escape to infinity

0.206

£ nomp QX _ 15 -

0z2r

0198 -
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Simplified treatment of resonances

A simplified treatment of the resonance can be obtained by considering a single
nonlinear element along the ring and looking at its effect on the charged particle
motion in phase space:

The rest of the ring has no nonlinear
element: the motion is just a rotation
described by the unperturbed betatron

kick tune Q, i.e.
turn' x=Acos@)  $=Qb

X and 0 (0 < 8 < 2m) is the azimuthal along
the ring.

kick \
turn 2\

When the particle reaches the nonlinear
element it receives a kick proportional to
the multipolar field error found

A 0B, .,
Bonl ox"

Ap =
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Example: second order resonance ()

The effect of the kick can be computed analytically. Assume a quadrupole kick

ALAg
D=px' A Ap = BAX' = 5o

kick Ap = ABX’ The kick perturbs the amplitude
and the phase

Aa = Apsin(p)
¢ =Q6 Ap

2M\Q = - cos)

Substituting we obtain

_ ALAg _ BLAg
8Q=7 o cos(@) =y = [cos@g) +1]

Over one turn the perturbed phase advance is 4¢ = 27(Q + 4Q)
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Example: second order resonance (ll)
PLAg
B

The tune shift due to the kick AQ = [COSQ¢) +1] has a constant term

and a term depending on the phase with which the charged particle meets the
perturbing element.

Correspondingly, the perturbed tune Q + 4Q changes at each turn, oscillating
around the mean value with
_bALAg
4

Bo Cos@g)

with an amplitude A
50 = PLAg
47Bp

If this band contains the half integer resonance, eventually, on a particular turn, the
perturbed tune reaches the half integer resonance

_P
Q+AQ—2
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Resonance stopband

When this happens the particle locks to the resonance since, in the subsequent
turns, the perturbation to the tune will remain the same and will keep the perturbed
tune fixed to the resonant value

_PLAg _BALAg
AQ = 47Bp COSRy + 2/ p) = COS@Q)

47Bp
We can say that the half integer line % l : £
has a width 5 ¢ | &
5 Q= ,BLAg % & Perturbed Q
- ! N modulated by +6Q
ATBp SES S o tam
called resonance stopband. §§ = ]
All particles with tune within the S o
stop band, will end up locked to the ] ry —£T ’
resonance —_Stopband width i-: " § "
260 5

Once the particle is locked to the resonance the trajectory becomes periodic. This
situation can lead to particle losses due to the second order resonance
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Example: third order resonance

AB"
2Bp
Repeating the same procedure we can compute the tune shift due to the sextupole
kick as

The kick due to a normal sextupole, can be written as Ap = ,BAX':

_PB"a
A —ﬁ[cos&b) +300$@)]

If the tune is close to a third order resonance (Q = 1/3), within the stopband given

by
_ fALB"a

1677Bp

after a sufficient number of turns the tune will lock at the third order resonance,
every three turn the motion will repeat identical and the amplitude will grow
iIndefinitely.

Similarly it can be shown that an octupole excites a fourth order resonance, and a
2n-pole excites a n-th order resonance
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Hamiltonian of a charged particle in an accelerator

In a lattice made from dipoles, quads and sextupoles the Hamiltonian reads:

kinetic dlpoles quads extupoles
P + IOy
2(1+0)

H(s) = —bx3+ %x ; 2(x y)+b3(x xy2)+

2(5) 3(5)

The goal is finding a sextupole distribution such that |
achromatic and linear:

ceiH,1H 3 dsbecomes

 Independent of § (chromaticity corrected)

e Linear and uncoupled (~x2, y?): cancellation of nonlinear kicks
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Hamiltonian (I1)

Introducing in H(s) linear betaron oscillations for a flat lattice (D,= D , D= 0):

X(s) =+/2J,L5,(s) cosg (s) + D(s)o y(s) =4/2J,05,(s) cosg (s)

the powers of the trigonometric functions are turned into linear functions and
the terms with the same argument (the modes) collected:

JIHA(+Ho(9ds= Y. > Yy,

cell j=0 =

j+k=m, I+m=m,

with:

j+k  1+m jtk I+m
Nsex o o 2 H(J-K)@gn+(-ma,.} Ngua "5 o 1K) an+r(l-m)an}
Namp O > (B51), 8,2 B,2 D¢ it }—[an ‘(b,L), B2 B2 e #

pz0

The hy.,, are called resonance driving terms since they generate angle dependent
terms in the Hamiltonian that are responsible for the resonant motion of the
particles. On the islands the betatron tune satisfy a resonant condition of the type

aQ,+aQ,=r - resonance (a, @) of order a+a,witha,=j—kanda =1-m
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Hamiltonian modes

The Hamiltonian can be expressed abbreviating

[[H(9)+ H,(9)lds=Y "V, [+...quaddor p#0...]
The Hamiltonian modes are sums of complex vectors V,,e%" where each
vector corresponds to a sextupole. A
Sextupole, <» complex vector Ve : I m
Length V=V, (b;, L, 5, B, D)
Angle @, = D (¢, ¢,)

e dn = 0 — tune shift

* dn £ 0 — resonances

We have to find suitable distribution of nonlinear magnetic elements along
the ring, i.e. suitable functions V (s) that reduce or cancel those driving terms
which are stronger in the uncorrected machine.
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First order Hamiltonian with sextupoles (1)
- 2 phase independent terms — chromaticities:
o= +3,010 0 @0,L), 8,0, = S0 (b,L), B ~ &,
Mhosa =+3,0D 0 (2b,L), B0 =Y ""(b,L), ,Byn] NS

- 7 phase dependent terms — resonances: long term behaviour (many

cells and many turns) hN = h for N cells, many cells and many turns N —

o)

he | | Pitip | a, =(j-k) a,=(1-m)
jkimp 23|nﬂ(aXch” Q;ell)

h21000 h’ 12000 Qx

h30000= " 03000 3Q%
h10110= N 01120~ Q4
M10200= N 01020~ Qut2 QY
h10020= N 01200 Q2 QY

N20001= h* 02001 2Q

* 0.0 0.2 0.4 0.6 0.8 1.0
hoo201= N 00021 2Q, Ox
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Example: sextupole optimization with OPA ()

2 Sextupole families (ESRF standard cell)

Qx 21000 30x 30000 Qx+2Qy 10200
Qx 10110 Ox-20y 10020 SF 3.3 \ | \
SO -1.84 ‘ ‘
ST p.a0 ‘ ‘ ‘
S22 0.00 ‘ ‘ ‘
S3 0.00 ‘ ! ‘
% Sé 0,00 ‘ ‘ ‘
Qua-in Oct-in

S
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Sextupole optimization with OPA (Il)

6 Sextupole families (4 harmonic families in straight sections)

Ux

21000

30x

30000

Ux+20y 10200

Ox

10110

Ux-Z0y 10020

N

SF 0 3.30 ‘ . ‘
s 1.8 ‘ \
51 147 ‘ u ‘
52 -1.59 ‘ \
33 -1.58 [ [ ] ]
Sh 2.4k ‘ L] \

(A.
Qua-in Oct-in

S
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Sextupole optimization with OPA (lll)

Beta-X [m] Beta-Y [m]
1 1
3(0)

.
[

0

8,
104 67
| ‘-
£ i
] 2
O’ T T T T O T T T T T T T T
_ ) - ol - ] . o
EE A U I o 1 S Ly
T Linear chromaticities = 0 verieal T
orizantd une erticd une
35,45 Pl |
35.40 V(B) |
35.35 ]
] 11,374
35.30 1
] 11.36
35.25 ]
] 11,35
a0y i
ES.LD T T T T T T T T 1ﬂ_34 T T T T T T T T T
3 2 0 1 2 -3 -2 0 1

dD}D [%]

dD;(A%Streun, PSI)
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Sextupole optimization with OPA (IV)

Horizonfal: , Verfical:

Partial restoration of Poincare Plot of phase space

dynamic acceptance

N
X1 < 45075 mm X0 < 3.0 mrad Y1 < 54083 mn vl < 4.53 mrad
Limitation from 160 mm x 160 mm vacuum chamber (A.Streun, PSI)
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Resonance compensation strategies

Systematic compensation of the resonance terms is done more efficiently
choosing a suitable distribution of sextupole magnets along the ring with betatron
phase relations that exploit the periodicity and symmetry of the machine.

e.g. typically two equal sextupoles at 60°phase adv ance apart compensate each
other, in the 3Q, resonance driving term.

However their effect on all the other resonances has to be assessed: the linear
lattice design and the set-up of the nonlinear elements of a ring need an iterative
work:

» decouple chromatic sextupoles = placement of 2 SF, SD families

* fix phase advances, exploit symmetry and periodicity ->back to linear lattice
design and machine layout

* place “harmonic” sextupoles - 4 to 8 families...
* minimize first order terms setting sextupole strenghts
 check by traking = dynamic aperture, frequency maps...

e iterate...
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Tracking (1)

Most accelerator codes have tracking capabilities: MAD, MADX, Tracy-Il, elegant,
AT, BETA, Transport, ...

Typically one defines a set of initial coordinates for a particle to be tracked for a
given number of turns.

The tracking program launches the particle through the magnetic elements. Each
magnetic element transforms the initial coordinates according to a given
integration rule which depends on the program used, e.g. Transport (in MAD)

>_(> :(X,X’,y,yl’z’a) ’ JZE
PO
X, =RX, Linear map
X; ¢ :;Rjkxj’i +;TjkI XX, +;Ujklm)(j’i)(Li)(m’i +...

Nonlinear map up to third order as a truncated Taylor series
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Tracking (Il)

A Hamiltonian system is symplectic, i.e. the map which defines the evolution is
symplectic (volumes of phase space are preserved by the symplectic map)

X; =M (X) Mis symplectic transformation Jan(%) = OX, J'sSJ=S

ost Symplectic e~ 1 05} non

-~

04| integrator - RN 1 04| Symplectic .;
o3t <7 ™~ . o3t
v

If the integrator is not symplectic .| //d @s\ |

one may found artificial damping - ¢

02t 5\

or excitation effect S O I

04}F
o5t _—— 1 o5t

L I L I L L I L I L L L I L I L L I L I L L
05 04 03 02 01 0 01 02 03 04 05 05 04 03 02 01 0 01 02 03 04 05

The well-known Runge-Kutta integrators are not symplectic. Likewise the truncated
Taylor map is not symplectic. They are good for transfer line but they should not be
used for circular machine in long term tracking analysis

Elements described by thin lens kicks and drifts are always symplectic: long
elements are usually sliced in many sections.
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Frequency Map Analysis

The Frequency Map Analysis is a technique introduced in Accelerator Physics form
Celestial Mechanics (Laskar).

It allows the identification of dangerous non linear resonances during design and
operation. Strongly excited resonances can destroy the Dynamic Aperture.

To each point in the (X, y) aperture there
. - it A corresponds a point in the (Q,, Q,) plane

The colour code gives a measure of the
stability of the particle (blu = stable; red =
unstable)

The indicator for the stability is given by
the variation of the betatron tune during
the evolution: i.e. tracking N turns we
compute the tune from the first N/2 and
the second N/2

D = |091o \/(Q)EZ) _Q)El))z + (Q§2) _Q)(/l))z
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