BL29 overview & scientific case

BOREAS, Beamline Of REsonant Absorption and Scattering

Scientific Case

Soft x-rays: 80-4000 eV, Apple II, 3 VLS-grating mono, two endstations for XAS, XMCD/ XMLD, and XRMS

- Beamline performance, status, commissioning
- Hector endstation
- MaReS endstation
- In-house and user results

Scientific Case

Beamline designed for soft x-ray polarization-dependent spectroscopy and scattering: XAS,XMCD-XMLD, XRMS

highlights

extra slides

- Full x-ray polarization control (APPLE-II)
- Extended soft x-ray range: 80-4000 eV (high flux, resolving power)
- Variable x-ray beam size and focal distance (KB system)
- (ES1) High-field SC <u>vector</u> magnet: 6T, 2T with 1.5K-370K sample temp.
- (ES2) UHV scattering chamber, 2T magnet, large access, 20K-350K

optical layout

80 – 300 (800) eV	SM1+LEG
250 – 600 (1400) eV	SM2+LEG
380 -1700 eV	SM1+MEG
950-3000 eV	SM2+MEG
600 – 2100 eV	SM1+HEG
1900 – 4500 eV	SM2+HEG

Photon flux (calculated)

Monochromator chamber : 3 plane VLS gratings 2 spherical mirrors (mechanics by Toyama co.)

LEG: 200 I/mm, laminar, Ni coated [35nm}+Cr binding layer MEG: 800 I/mm, blazed (mech. Ruled + ion beam etch), Rh [35nm] HEG: 1200I/mm, blazed, Au [35nm]

d6

d5

d4

BL performance-resolution LEG

LBA

Resolving power (ES=15/XS=15)

l zero: AXUV100 (IRD) absolute diode,		photon flux		
hv	I _{SR}	Diode current	flux	
500eV	70µA	17.3 µA	7.8x10 ¹¹ photons/s ^{(*}	
(*) : Cir Extrapol	cular pola ates to 4-5	rization, ES=150 5x10 ¹² photons/s	um; XS=5um; s at I _{sR} =400µA	

Beam size (micron)

Element	Vertical	Horizontal
exit slit	10	250
ES1	600	250

BL performance-resolution MEG, HEG

- At 15/5 slits, MEG and HEG single Lorentzian width is 0.26(8) and 0.25(4) eV
- Width smaller literature Ne K natural width, 0.27+/- 0.02 eV [Floreano et al, RSI]
- for 15/15 μm slits and ~ **20,000** for 15/5 μm,
- **Confirmed resolution performance** of conceptual design

2000

Linear polarization

Circular & elliptical polarization

- Considerably high flux with good resolution in the high energy range (>1.5 keV) Typically 1st ID harmonic 100-1100 eV ; 3rdh : 1000-2500 eV approx. ; 3rd, 5th, ... for E>2000 eV
- Spectral purity: ID harmonics x grating orders coincidences can be relatively intense

Step scan, variable step: Finest res. 0.050 meV Total time: 17min 30sec Normalized Continuous scans 0.050meV resolution everywhere Total time : 2min Not normalized

- Continuous scans can more efficiently use acquisition, benefiting of high frequency sampling
- As important as time saving, is quality of sucessive measurements.

ELEMENT	STATUS	HIGHLIGHTS, INCIDENCES
Monochromator	READY	Works well, reprod.~10 meV, analyzing energy instabilities - Grating exchange prob→ solved, back to motorized mode
diagnostics, gas cell, foils	READY	- Work well; LEG, MEG energy calibration; HEG calibration
<u>re-focusing mirrors (KB)</u>	CONSERVATIVE OPERATION, COMMISSIONING FORESEEN END DEC'13	 Pitch works; benders fixed at nominal ES1 focus; Two translations blocked (but beam aligned through) Conservative operation (beam focus so far OK). Variable beam size/focus commissioning July 2013
Signal normalization	READY	Works fine, either last KB mirror or Io mesh (gold evaporator)
High Flux	Performance confirmed	LEG flux 8x10 ¹¹ photons/s at 500eV MEG, HEG provide expected high flux on large hv range
High Resolution	Performance confirmed	Resolving power : >7,000 at 400 eV (LEG) ; 7,500 – 20,000 at Neon K edge (867.1 eV) with LEG+SM2, MEG+SM1, HEG+SM1 ; Ru L, HEG+SM2
Spectral Purity	Under commissioning, analysis	 Considerably intense harmonics, half orders (expected, not a big issue for now; choose harmonic,) Future → harmonic rejection mirror system, filters
<u>Undulator, Control</u>	Under commissioning, analysis	 Analysis of x-ray polarization (Fe film, polarimeter?) Linear polarization angle control Continuous scans (mono, mono+ID) : in progress

BL endstations update - XMCD magnet

First endstation, "HECTOR" high-field magnet

- Running full experiments since May 2012
- performing according to specs (6Tesla, 1.5K)

Upgrades from May:

- Final cabling
- Electrometer stack
- Improved vacuum scheme (safe if supply failure)
- Enhanced control, macros

- Safety: signs, plastic chains, "field on" flashing lights

Upgraded capabilities, equipment:

- upgraded with transmission detection (Oct'2012), transmission sample holders
- upgraded equipment: heating stage, evaporators, wobble stick, gas lines, ion gun, quartz balance

In progress upgrades:

- Fluorescence detection (Feb'2012)
- Dock for travelling suitcase, STM
- Motorization of transmission diode
- Anti-condensation, other upgrades if funded

Installed equipment: heating stage, metal evaporator, wobble stick, gas lines, leak valve, quartz balance

Transmission arm

e-beam heating stage

Demanding surface science user&in-house experiments put strong needs for these and further surface science equipment: turbo pump in preparation chamber, multi-sample loading upgrade for load-lock, LEED, evaporation screen, enhanced fluorescence detection (funding needed)

In-situ cleaver, wobble stick

scrapper (file), ash tray

endstation 1 – upgrades at Hector

Vector magnet: 6T , 2T (3D) Temp.: 2K – 350K sample contacts

- Temperature control macros ; 3D mode integration (new gui)
- Transmission diode arm (motorized)
- Quadruple metal evaporator, organic evaporator, heating stage, ion gun
- Turbo, LEED/AES prep-ch upgrades (warranting good surface science)
- Fluorescence diode: diode + 2 HV grids for e⁻ repulsion (foil option)
- Many more types of sample holders, clips;
- In progress: bias, HV batteries, ...enhancing TEY detection

Fluorescence diode assembly designed and built at ALBA (installed end Feb'2013)

endstation 2– status scattering (MaReS)

Final assembly mid 2014, Commissioning end 2014, official users Jan' 2015

- Assembly, tests, commissioning
- Cabling, control (pool) under progress
- Designs, CCD CFT in progress

Extraction tool (detailed final design in progress)

B O R E A S

"MaReS" endstation concept

Multiaxis C6 cryomanipulator

Large UHV vessel (photo of manufacturing at VCS factory in Italy)

reflectometer rotary feedthroughs

Interstation transfer line & STM- status

- Most elements bought
- Support on design
- System working Dec 2013 or early 2014

BA

- User proposal, ext. cycle, Feb-March 2013
- Magnetic semiconductors, delicate sample mounting
- Fluorescence diode used for the first time
- Interest of Partial Fluorescence yield for dilute systems

Courtesy I. Kowalik, D. Arvinitis et al, IFW-Lund Univ - Imdea

<u>User proposal, 2012 round</u>

- ε-Fe2O3 along transition from collinear magnetic (CM) to incommensurate magnetic structures

Courtesy of M. Gich et al, ICMAB-CSIC (more on his talk)

user results: contributing to phD work

Courtesy J. Padilla, J.L. Garcia Muñoz et al

HTS with embedded NPs, (2012, user exp 0180) E. Solano et al, UAB-ICMAB-ALBA BL29

Chapter 9

Synchrotron XAS & XMCD

		Contents 9.1 Samples messured 180 9.2 Ferrite magnetic nanoparticles 181 9.2 Ferrite magnetic nanoparticles 181 9.2 Ferrite magnetic nanoparticles 181 9.2.2 CoFc ₂ O ₄ 182 9.2.3 MuFc ₂ O ₄ 183 i MuFc ₂ O ₄ 183 i MuFc ₂ O ₄ 186 9.3 YBCO laybrid nanostructured layers 188 9.4 Sum rules 189 9.5 Chapter summary 194 References 197	
RCP LCP XMCD	T.E.Y. signal (arb. u.))
0 675 680	690	695 700 705 710 715 720 725 730 735 740 745 750 755 7	760
		Energy (ev)	

Energy (eV) (a) $MnFe_2O_4$ -T Mn edge

636 638 640 642 644 646 648 650 652 654 656 658 660 Energy (eV)

660 665

67

(b) $MnFe_2O_4$ -T Fe edge

Early results presented at MRS2013, publiction in preparation

signal (arb. u.)

Щ. Ч

630

Intensity (arb. u.)

635 640

645 650 655

> Fe di-nuclear molecular magnets, preliminary measurements

J. Giner et al, ICMAB-UAB-BL29

José Giner Planas,*a Florencia Di Salvo,a Min Ying Tsang,a Francesc Teixidor,a Clara Viñas,a Núria Aliaga-Alcalde,a Eliseo Ruiz,^b Duane Choquesillo-Lazarte^c

Institut de Ciència Materials Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra (Spain). de de de la ^b Departament de Química Inorgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona (Spain). ^cLaboratorio de Estudios Cristalográficos, IACT-CSIC, Armilla, Granada (Spain)

CI L1 edge, 200 eV (20 time attenuated flux)

Status & operation report BL29 - BOREAS

Giant Exch Bias Co-CoO granular systems

Nanjing University / MPI CPfS Dresden / CELLS-ALBA (E. Pellegrin, BL29)

- Uncompensated rotatable Co2+ spins in nominally AFM CoO shell stabilized by MgO matrix.
- Metallicity cancels CoO FM contribution
- 30% Co metal + 70% ferromagnetic Co2+ in dichroic spectrum.
- Larger part of ferromagnetic signal stems from CoO shell

1st BL29 publication, to appear in Nanoscale.

User results spotlight: spintronics

Motivation: Magnetization switching by in-plane current injection

500 nm

Can Onur Avci, Kevin Garello, Corneliu Nistor, Mihai Miron, Sylvie Godey, Belen Ballesteros, Aitor Mugarza, and Pietro Gambardella Catalan Institute of Nanotechnology (ICN)

Alessandro Barla CNR – ISM Trieste

Manuel Valvidares, Eric Pellegrin Boreas beamline, ALBA

Nature 476, 189 (2011)

21 of 12

ALBA synchrotron light source

User results spotlight: spintronics

Optimization of material parameters

Stack composition:

HM/FM/Ox

HM = heavy metal (Pt, Ta, W, ...) FM = ferromagnet (Co, CoFeB, ...) Ox = 0xide (AlOx, MgO,...)

Thickness Annealing conditions Magnetization

Chemical sensitivity afforded by XAS

Quality of oxide barrier:

XAS at the K edge of Mg

Diffusion of B from the FM to the oxide:

XAS at the K edge of B

User results spotlight: spintronics

Element-resolved magnetic moments measured by XMCD

LBA

Several ultrathin magnetic films (0.5 – 1 nm) were measured by XAS and XMCD

The energy range of the beamline is very convenient

The signal-to-noise ratio is comparable to that of other synchrotron sources in Europe

XMCD spectra are acquired in a reasonable time

It would be nice to have better online software to perform quick analysis of the spectra

These measurements are helping us to optimize the fabrication of magnetic layers for current-induced switching applications.

acknowledgements

THANKS FOR YOUR ATTENTION AND ADVICE ON BOREAS BEAMLINE !

BL29 Staff

J. Herrero (BL sci), P. Gargiani (postdoc sci), J. Moldes (control), A. Crisol (eng.), F. Farre (tech.), X. Fariña and X. Serra (electronics), and M.Valvidares

Special thanks&acknowledgement to

 E. Pellegrin, C.Colldelram, J. Ferrer and the workshop guys, the continuous scan squad, J. Nicolas, D. Fernandez,
 L. Campos, User and Safety Officers, BOREAS users and collaborators at ICMAB, UAB, ICN, Complutense Madrid y Oviedo University

Thanks for the support and consulting S. Ferrer, G. Garcia, M. A. Garcia

Former staff, tech. help, thanks:

A. Barla, R. Martin, J.F. Moreno, D. Bacescu, L. Campos, J. Nicolas, J. C.Martinez, J. Lidon, O. Matilla, S. Rubio, Fulvio, J. Navarro, C. Ruget, Alex, Paco, Lluis, Eshraq, Xavi P., C. Orozco, D. Iriarte, Thiago, D. Fernandez, A. Ruz, X. Farina, S. Astorga, Bern, Paco, Oscar, David, J. Ferrer, user office, legal section (CFTs) and roomies

Ext. people ack.: J. B. Kortright, N. Brookes, J. Criginski, C. Quiros, J.M.Alameda, Cinthia Piamonteze, Thomas Schroder,

External companies acknowledgment: TOYAMA, SCI-MAG, CVT, VG, HTS-110, PINK, SPECS, DODECON,FERROVAC, GAMMVAC,TECNOVAC, NANOTEC, IBERLASER, HOSITRAD, VCS, AVS, AVACTEC, VAQTEC, MCALLISTER, HAMAMATSU, XCAM, AMBAR, INSERTY, SPARK,NANOTEC, SJUTS, KONIK, MDC, TRINOS, VAT, ...